
Two Normal Forms for Link-Connector Pairs in NCL 3.0

Guilherme Augusto Ferreira Lima
Department of Informatics

PUC-Rio, Rio de Janeiro, Brazil
glima@inf.puc-rio.br

Luiz Fernando Gomes Soares
Department of Informatics

PUC-Rio, Rio de Janeiro, Brazil
lfgs@inf.puc-rio.br

ABSTRACT
In this paper, we investigate the problem of normal forms for links
and connectors in NCL 3.0. We identify two such forms, called the
First and Second Normal Forms (NF1 and NF2), in which links and
connectors appear in simple terms. We also present normalization
procedures (proofs), which show that for every NCL 3.0 program,
there is an equivalent program in each of the forms. The mere
existence of NF1 and NF2 makes the semantic analysis of programs
simpler. Moreover, the symmetry exhibited by these forms suggests
that the same principle of arbitrarily ordered evaluation underlies
both the evaluation of link conditions and the execution of non-
sequential compound actions.

Categories and Subject Descriptors: I.7.2 [Document Prepara-
tion]: Languages and systems

General Terms: Languages, Theory

Keywords: Connectors; links; NCL; Nested Context Language;
normal form; semantics

1. INTRODUCTION
Links and connectors are the primary constructs for media syn-
chronization in NCL 3.0 [1, 5]. Links define causal relationships
between events in a presentation; connectors define reusable tem-
plates for links. Every link-connector pair1 has two parts: condition
and action. The condition specifies the events to be waited together
with a predicate, or “assessment statement” in NCL terminology,
to be evaluated at each occurrence of the former. The action spec-
ifies the events to be generated whenever the condition is satisfied,
i.e., whenever the awaited events occur and, simultaneously, the
associated predicate evaluates to true.

1We shall use the term “link-connector pair” to refer to the causal rela-
tionship denoted by a link together with its connector. This terminology
is justified because, in terms of program behavior, these constructs are vir-
tually indissociable, with the connector being an integral part of the link
definition.

Copyright© 2013 ACM. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use; not for redistribution. The definitive
version was published in WebMedia’13, http://dx.doi.org/10.1145/2526188.2526238.

There are several ways in which one can restrict the form of links
and connectors without affecting the expressiveness of NCL 3.0.2

In this paper, we present two such restricted, or normal, forms with
some interesting properties. More specifically, we show that for
every NCL program X there is an equivalent program X′ such that,
for each link-connector pair ℓ in X′, the following properties hold.

1. The condition of ℓ consists of an atomic condition together
with a predicate.

2. The action of ℓ is either atomic or is the sequential composi-
tion of two atomic actions.

Properties (1) and (2) correspond to what we call the First Normal
Form (NF1) for NCL programs. We also define a Second Normal
Form (NF2), which consists of property (1) together with the fol-
lowing properties.

3. The action of ℓ is either of the same format as that of (2) or
is the arbitrarily ordered, viz., parallel, composition of n ≥ 2
actions of the same format as that of (2).

4. For every ℓ′ in X′ with ℓ′ , ℓ, the condition of ℓ′ is different
from that of ℓ.

The implication of property (1) to works like [2, 3, 4, 6, 7, 8],
which analyze the behavior of links and connectors in NCL, is im-
mediate: one is freed from the intricate cases of link-connector
pairs containing multiple conditions. Similar arguments apply to
properties (2)–(4). However, properties (2)–(4) also have a subtler,
more profound implication. The manifest symmetry between (2)
and (3)–(4) suggests that the principle of arbitrarily ordered eval-
uation involved in the evaluation of conditions of distinct links is
equivalent to that involved in the execution of non-sequential, or
parallel3, actions; an observation that might prove relevant for fu-
ture semantic investigations.

We can convert any NCL program into an equivalent program
in NF1 or NF2. The conversion, or normalization, procedure con-
sists of several stages, or reductions, wherein link-connector pairs
that violate the properties of the particular normal form are replaced
by equivalent pairs that are satisfactory, or that are closer to be sat-
isfactory than the original ones. The reductions are applied repeat-
edly until all link-connector pairs become satisfactory.

Although we try to be rigorous in justifying correctness of each
reduction, our approach to language semantics is essentially infor-
mal. We consider two NCL programs X and X′ equivalent iff (if,
and only if) both define the same set of possible presentations. In
particular, if X and X′ are deterministic programs, then each defines
a single presentation. These are considered equivalent iff, for every
2From now on, we shall simply speak of NCL with the suffix “3.0” being
tacitly understood.
3We shall use the term “parallel” in the particular sense defined by the NCL
specification [1, p. 61][5, p. 40], viz., that of evaluation in an arbitrary order,
and not in the sense of concurrent evaluation, which is its usual meaning.

input event e, at any given time, the result of applying e to each
presentation is exactly the same. By “result,” we mean what users
see on screen and hear from speakers. We extend this definition
to nondeterministic programs X and X′ by requiring that the set of
results induced by e on X, at any given time, be equal to the set
induced by e on X′ at that same time, and vice versa.

To simplify the definition of the reductions we introduce, in Sec-
tion 2, the abstract syntax ABS for the unified representation of
link-connector pairs in NCL programs. ABS hides away some id-
iosyncrasies of the concrete syntax of NCL, e.g., the distinction
between links and connectors, n-ary compositions, etc., that would
complicate the definitions and proofs presented in Sections 3 and 4.
Nevertheless, the mapping of ABS programs into equivalent NCL
programs is straightforward. The same applies to the normalization
procedures, which we define only for ABS programs. The mapping
of these procedures into equivalent procedures that operate on NCL
programs follows directly from the previous mapping.

The rest of the paper is organized as follows. Section 2 presents
the syntax and semantics of ABS, and discusses the mapping of its
programs into equivalent NCL programs. Sections 3 and 4 present,
respectively, the First and Second Normal Form theorems for ABS
programs, with their proofs corresponding to what we termed the
“normalization procedures.” Finally, Section 5 concludes the paper.

2. THE ABSTRACT SYNTAX
In this section, we introduce ABS, a simple language for the uni-
fied representation of link-connector pairs in NCL programs. First,
we define the syntax of ABS, i.e., the structure of the expressions
which we regard as well-formed programs. Then, we present the
intended interpretation for these programs. Finally, we discuss the
mapping of NCL programs into equivalent ABS programs.

ABS has five main syntactic sets: programs S, links L, condi-
tions C, predicates P, and actions A. The structure of the mem-
bers of these sets is given by the following BNF-like grammar,
where ‘::=’ read as “can be,” ‘|’ read as “or,” ε stands for the empty
string, and the metavariables S , L, C, P, and A, with or without
super or subscripts, are assumed to range over the sets S, L, C, P,
and A, respectively.

S ::= LS 0 | ε
L ::= C → A

C ::= (C0 ∧C1 ? P) | (C0 ∨C1 ? P) | (c ? P)
P ::= (P0 ∧ P1) | (P0 ∨ P1) | (¬P0) | p
A ::= (A0, A1) | (A0 ∥ A1) | a

The definition of conditions (C), predicates (P), and actions (A)
contain the metavariables c, p, and a. These are assumed to range
over the primitive syntactic sets c of atomic conditions, p of atomic
predicates, and a of atomic actions, respectively. The partial struc-
ture of the members of these primitive sets is given below.

c ::= u.v | · · ·
p ::= u.v0 = v1 | · · ·
a ::= u.v0 := v1 | · · ·

Here ‘· · · ’ stands for the omitted forms, i.e., those whose structure
is of no particular interest to us, and the metavariables u and v,
with or without subscripts, are assumed to range over the sets u
of component (i.e., media, context, or switch) identifiers and v of
arbitrary strings, respectively. We assume that the structure of the
members of u and v is given.

By the above definition, an ABS program S is simply a finite list
of links L1, L2, . . . , Ln with n ≥ 0. Each link Li, for 1 ≤ i ≤ n,
is of the form C → A and establishes that whenever condition C
is satisfied, action A is executed. Condition C is either the con-
junction (∧) or disjunction (∨) of two other conditions C0 and C1

associated with a predicate P, viz., the expression at the right-hand
side of symbol ‘?’, or is an atomic condition c also associated with
a predicate P. Predicate P, in turn, is either the conjunction (∧) or
disjunction (∨) of two other predicates P0 and P1, the negation (¬)
of another predicate P0, or is an atomic predicate p. Finally, ac-
tion A is either the sequential (,) or parallel (∥) composition of two
other actions A0 and A1, or is an atomic action a.

Moreover, the atomic condition c specifies a single event to be
waited (e.g., the pressing of a button), the atomic predicate p spec-
ifies a Boolean test involving the equality or inequality of prop-
erties (i.e., NCL <property> elements) and values (i.e., arbitrary
strings), and the atomic action a specifies an event to be generated
(e.g., the starting of the presentation of some media object). The
particular forms of c, p, and a that were singled out are to be in-
terpreted as follows: The atomic condition u.v is satisfied whenever
some value is stored in property v of component u, the atomic pred-
icate u.v0 = v1 evaluates to true if the content of property v0 of com-
ponent u is equal to the string v1, and the atomic action u.v0 := v1,
if executed, stores the string v1 into property v0 of component u.

The mapping of an arbitrary NCL program X into an equiva-
lent ABS program is direct if X satisfies the following restrictions.

1. Each connector of X is referenced by exactly one link.
2. The connectors and links of X contain no link, bind, or con-

nector parameters, i.e., no <linkParam>, <bindParam>, or
<connectorParam> elements.

3. The compound conditions and compound actions of all con-
nectors of X have no delay attribute.

4. The simple conditions and simple actions of all connectors
of X are referenced by exactly one bind (i.e., <bind> ele-
ment) in the associated links.

5. The compound actions and compound statements of all con-
nectors of X are binary and its compound conditions are ei-
ther binary or ternary, and have exactly one child (assessment
or compound) statement.

If X satisfies the above restrictions, we can build an equiva-
lent ABS program by mapping each link-connector pair ℓ of X into
an equivalent element of L. The mapping is defined by recursion as
follows: For each ℓ, we map each of its <compoundCondition>,
<compoundStatement>, and <compoundAction> elements into
equivalent members of C, P, and A, respectively, and, at the ba-
sis of the recursion, we map each of its <simpleCondition>,
<assessmentStatement>, and <simpleAction> elements, to-
gether with the associated <role> elements, into equivalent mem-
bers of c, p, and a, respectively.

If, however, X does not satisfy restrictions (1)–(5), we first need
to convert it into an equivalent satisfactory NCL program, which is
then mapped into ABS. Since this extra conversion, or prenormal-
ization, stage is not particularly enlightening we shall only discuss
it briefly.4 The prenormalization procedure consists, basically, of
the consecutive application of steps (1)–(5) below.5

1. Make a copy of each connector that is referenced by more
than one link and update the links to point to different copies.

4This stage is implemented by prenormalization module of the DietNCL
conversion tool, cf. http://www.telemidia.puc-rio.br/~gflima.
5More precisely, for each step 1 ≤ i ≤ 5 and each program X, if we apply
the prenormalization steps (1)–(i) to X we get an equivalent program X′ that
satisfies restriction (i).

http://www.telemidia.puc-rio.br/~gflima

2. Replace, in each connector, the value of the parameters de-
fined in the associated link.

3. Add the delay attribute of each compound condition (or ac-
tion) to the delay of its components. Then remove the delay
attribute from the parent composition. Repeat this procedure
until all compositions have no delay attribute.

4. Replace each simple condition (or action) that is referenced
by more than one bind by an equivalent compound condition
(or action) and update the role of the referring binds to point
to the new simple conditions (or actions). Repeat this proce-
dure until every simple condition (or action) is referenced by
exactly one bind.

5. Replace all simple conditions by a binary compound condi-
tion containing the original simple condition together with a
tautological assessment statement. Then break all n-ary com-
pound conditions, with n ≥ 3, into an equivalent chain of
binary ones, adding vacuous, tautological statements when-
ever necessary. Finally, repeat the breakage procedure for
compound actions and compound statements.

3. FIRST NORMAL FORM
We now undertake the task of stating and proving the first normal
form theorem for ABS programs. First, however, we need to intro-
duce some notation.

Let e0 and e1 be elements of the same syntactic set. Then we
write e0 ≡ e1 iff e0 is identical to e1, i.e., iff they have the same
parse tree.

The condition degree d of a link L ≡ C → A is defined induc-
tively by the following clauses.

1. If C ≡ (c ? P) then d = 0.
2. If C ≡ (C0 ∧C1 ? P) or C ≡ (C0 ∨C1 ? P), and the condition

degrees of C0 and C1 are, respectively, d0 and d1, then d =
d0 + d1 + 1.

Similarly, the action degree d of a link L ≡ C → A is defined by:
1. If A ≡ a or A ≡ (a0, a1) then d = 0.
2. If A ≡ (A0, A1), with Ai . a for some i = 0 or i = 1,

or A ≡ (A0 ∥ A1), and the action degrees of A0 and A1 are,
respectively, d0 and d1, then d = d0 + d1 + 1.

We shall use the letter ‘F’, with or without subscripts, to rep-
resent flags: specially crafted properties (i.e., <property> ele-
ments) that function as private variables. We use flags to simulate
the behavior of the particular construction we are trying to elimi-
nate. Flags may appear in conditions, predicates, and actions. E.g.,
link (F ? P) → A establishes that whenever some value is stored
in flag F and, simultaneously, predicate P holds (i.e., evaluates to
true), then action A is executed; link (C ? F = 1) → A estab-
lishes that whenever C is satisfied and, simultaneously, the content
of flag F is equal to 1, then A is executed; and link C → F := 1
establishes that whenever C is satisfied, then 1 is stored in flag F.
Initially, every flag is assumed to contain 0.

We now prove a basic lemma about the elimination of non-atomic
conditions.

Lemma 1. For any ABS program S there is an equivalent pro-
gram S ′ such that each link L of S ′ has condition degree zero, i.e.,

L ≡ (c ? P)→ A,

for some atomic condition c, predicate P, and action A.

Proof. Let S be an arbitrary ABS program, and let L be some
link of S with condition degree dc > 0. Then either

L ≡ ((C0 ? P) ∨ (C1 ? Q) ? R
)→ A (1)

or

L ≡ ((C0 ? P) ∧ (C1 ? Q) ? R
)→ A, (2)

for some conditions C0 and C1, predicates P, Q, and R, and ac-
tion A.

In case (1), action A is executed if any of the conditions (C0 ? P)
or (C1 ? Q) are satisfied and if, simultaneously, predicate R holds.
We remove link L from S by transforming it into the links

(C0 ? P ∧ R)→ A

(C1 ? Q ∧ R)→ A,

which execute A if C0 is satisfied and P∧R holds, or C1 is satisfied
and Q ∧ R holds, or both. Thus the transformation maintains the
original behavior.

In case (2), action A is executed immediately after conditions
(C0 ? P) and (C1 ? Q) are satisfied (in fact, just after the last one of
them is satisfied) and only if, at that moment, predicate R holds. In
this case, we remove link L from S by transforming it into the links

(C0 ? P ∧ R)→ FC0 := 1
(C1 ? Q ∧ R)→ FC1 := 1

(FC0 ? FC1 = 1)→ (F(C0∧C1) := v, A)
(FC1 ? FC0 = 1)→ (F(C0∧C1) := v, A)

(F(C0∧C1) ? ⊤)→ (FC0 := 0, FC1 := 0),

where ⊤ denotes some tautological predicate, e.g., (p ∨ ¬p), and v
denotes some arbitrary string. These links execute A immediately
after condition (C0 ? P∧R) is satisfied if (C1 ? Q∧R) was satisfied
earlier, or after (C1 ? Q ∧ R) if (C0 ? P ∧ R) was satisfied earlier.
Thus the transformation maintains the original behavior.

In either case, the links replaced for L have condition degree less
than dc. Therefore, by successively repeating the transformations,
we obtain an equivalent program S ′ in which all links have condi-
tion degree zero.

We proceed to prove the main result of this section.

Theorem 1 (First Normal Form, or NF1). For any ABS pro-
gram S there is an equivalent program S ′ such that each link L
of S ′ has condition and action degrees zero, i.e.,

L ≡ (c ? P)→ a0 or L ≡ (c ? P)→ (a0, a1),

for some atomic condition c, predicate P, and atomic actions a, a0,
and a1.

Proof. Let S ′′ be the result of applying Lemma 1 to S , and let L
be some link of S ′′ with an action degree da > 0. Then either

L ≡ C → (A0 ∥ A1) or L ≡ C → (A0, A1),

for some condition C ≡ (c ? P) and actions A0 and A1.
In the first case, if condition C is satisfied then actions A0 and A1

are executed in “parallel,” i.e., in an arbitrary order. We remove
link L from S ′′ by transforming it into the links

C → A0

C → A1,

which clearly maintain the original behavior, since, in NCL, the
order of evaluation of links is also arbitrary.

In the second case, if condition C is satisfied then actions A0

and A1 are executed in sequence, i.e., A0 is executed before A1.
There are the following three possibilities. (Note that all of them
guarantee that the links replaced for L execute A0 before A1 when-
ever C is satisfied.)

1. If A1 . a, for any atomic action a, we replace L by

C → (A0, FA0 := v)
(FA0 ? ⊤)→ A1.

2. If A0 ≡ (A′0, A
′′
0), for some A′0 and A′′0 , we replace L by

C → (A′0, FA′0
:= v)

(FA′0
? ⊤)→ (A′′0 , A1).

3. If A0 ≡ (A′0 ∥ A′′0), for some A′0 and A′′0 , we replace L by

C → (A′0, FA′0
:= 1)

C → (A′′0 , FA′′0
:= 1)

(FA′0
? FA′′0

= 1)→ (F(A′0∥A
′′
0) := v, A1)

(FA′′0
? FA′0

= 1)→ (F(A′0∥A
′′
0) := v, A1)

(F(A′0∥A
′′
0) ? ⊤)→ (FA′0

:= 0, FA′′0
:= 0).

In any case, the links replaced for L have condition degree zero
and have action degree less than da. Therefore, by successively
repeating the transformations, we obtain an equivalent program S ′

in which all links have condition and action degrees zero.

4. SECOND NORMAL FORM
We now turn to the statement and proof of the second normal form
theorem for ABS programs. To characterize the structure of actions
in this normal form, we introduce the concept of sequential degree.

The sequential degree d of a link L ≡ C → A is defined by:
1. If A ≡ a or A ≡ (a0, a1) then d = 0.
2. If A ≡ (A0 ∥ A1) and the sequential degrees of A0 and A1 are,

respectively, d0 and d1, then d = d0 + d1.
3. If A ≡ (A0, A1), with Ai . a for some i = 0 or i = 1, and the

sequential degrees of A0 and A1 are, respectively, d0 and d1,
then d = d0 + d1 + 1.

The following corollary is a direct consequence of Theorem 1.

Corollary 1. If S is an ABS program in NF1, then all its links
have sequential degree zero.

Proof. By Theorem 1, every link of S has action degree zero.
Thus, by the first clause of the definitions of action and sequential
degrees, every link of S has sequential degree zero.

We proceed to establish the main result of this section.

Theorem 2 (Second Normal Form, or NF2). For any ABS pro-
gram S there is an equivalent program S ′ such that each link L
of S ′ has condition and sequential degrees zero, i.e.,

L ≡ (c ? P)→ A0 or L ≡ (c ? P)→ (A1 ∥ A2 ∥ · · · ∥ An),

for some atomic condition c, predicate P, and actions A0, A1, . . . ,
An such that Ai ≡ a or Ai ≡ (a0, a1), for 0 ≤ i ≤ n. Moreover, for
each pair of distinct links L′ ≡ C′ → A′ and L′′ ≡ C′′ → A′′ of S ′,

C′ . C′′,

i.e., no two links of S ′ have the same condition.

Proof. Let S ′′ be the result of applying Theorem 1 to S , and let
L′ ≡ C′ → A′ and L′′ ≡ C′′ → A′′ be links of S ′′ such that C′ ≡ C′′.
Then, by Theorem 1, L′ and L′′ have condition degree zero, and
by Corollary 1, they have sequential degree zero. We remove L′

and L′′ by transforming them into a single link of the form

C′ → (A′ ∥ A′′), (3)

which clearly maintains the original behavior. Moreover, (3) has
condition and sequential degrees zero—its condition degree is equal
to that of C′, which is zero, and its sequential degree is equal to the
sum of the degrees of A′ and A′′, which are also zero. Therefore, by
successively repeating the transformations we obtain an equivalent
program S ′ in which all links have condition and sequential degrees
zero and such that no two links have the same condition.

5. CONCLUSION
In this paper, we investigated the problem of normal forms for links
and connectors in NCL 3.0. Two such forms, termed the First
and Second Normal Forms, were identified and precisely defined.
Moreover, we showed that for every NCL 3.0 program there is an
equivalent program in each of the forms. We also discussed the ap-
parent duality between these forms, which suggests that the same
principle of arbitrarily ordered evaluation underlies both the evalu-
ation of conditions and the execution of non-sequential, “parallel”
actions. We hope this result prove useful for future investigations.

A related problem, not addressed in this paper, is the question
whether NF1 and NF2 are irreducible. We believe that to be the
case, but we still do not have a proof, which might require the for-
malization of program semantics.

REFERENCES
[1] ABNT NBR 15606-2. Digital Terrestrial TV – Data coding

and transmission specification for digital broadcasting – Part 2:
Ginga-NCL for fixed and mobile receivers: XML application
language for application coding. ABNT, São Paulo, SP, Brazil,
November 2007.

[2] Costa, R. M. R., Moreno, M. F., and Soares, L. F. G. Interme-
dia synchronization management in DTV systems. In Proceed-
ings of the 8th ACM Symposium on Document Engineering -
DocEng’08 (São Paulo, SP, Brazil, September 2008), ACM,
New York, NY, USA, pp. 289–297.

[3] dos Santos, J., Braga, C., and Saade, D. C. M. A model-driven
approach for the analysis of multimedia documents. In Pro-
ceedings of the Doctoral Symposium of the 5th International
Conference on Software Language Engineering - SLE 2012
(Dresden, Germany, September 2012).

[4] Felix, M. F., Haeusler, E. H., and Soares, L. F. G. Validating
hypermedia documents: A timed automata approach. Mono-
grafias em Ciência da Computação, PUC-Rio, Rio de Janeiro,
RJ, Brazil, 2002.

[5] ITU-T Recommendation H.761. Nested Context Language
(NCL) and Ginga-NCL for IPTV Services. ITU-T, Geneva,
Switzerland, April 2009.

[6] Lima, G. A. F., Soares, L. F. G., Neto, C. S. S., Moreno, M. F.,
Costa, R. R., and Moreno, M. F. Towards the NCL Raw Pro-
file. In II Workshop de TV Digital Interativa (WTVDI) - Colo-
cated with ACM WebMedia’10 (Belo Horizonte, MG, Brazil,
October 2010).

[7] Picinin, Jr., D., Farines, J.-M., and Koliver, C. An approach to
verify live NCL applications. In Proceedings of the 18th Brazil-
ian Symposium on Multimedia and the Web - WebMedia’12
(São Paulo, SP, Brazil, October 2012), ACM, New York, NY,
USA, pp. 223–232.

[8] Yovine, S., Olivero, A., Monteverde, D., Cordoba, G., and
Reiter, L. An approach for the verification of the temporal
consistency of NCL applications. In II Workshop de TV Dig-
ital Interativa (WTVDI) - Colocated with ACM WebMedia’10
(Belo Horizonte, MG, Brazil, October 2010).

	Introduction
	The Abstract Syntax
	First Normal Form
	Second Normal Form
	Conclusion

