
Reducing the Complexity of NCL Player Implementations

Guilherme A. F. Lima Luiz Fernando G. Soares Roberto G. A. Azevedo Marcio F. Moreno
Department of Informatics

PUC-Rio, Rio de Janeiro, Brazil
{glima,lfgs,razevedo,mfmoreno}@inf.puc-rio.br

ABSTRACT
In this paper, we present an approach for reducing the complexity
of NCL player implementations. This approach consists, basically,
in introducing in the player’s architecture an initial conversion step
that removes all syntactic sugar and reuse features from the source
language. The output of this step, a redundancy-free version of the
original input, is then fed to the player that interprets it and creates
a corresponding multimedia presentation. In particular, we propose
the use of the NCL Raw profile as this intermediate language. The
Raw profile is an (almost) redundancy-free profile that is compati-
ble with the NCL 3.0 EDTV (Enhanced Digital TV) profile, a prop-
erty that guarantees a seamless integration with current EDTV pro-
file implementations. The main targets of the proposed approach
are NCL players running on HTML browsers. We discuss how
the solutions presented by NCL4Web, WebNCL, and Ginga Plug-
in can be tuned to overcome some problems pointed their authors.
The same problems arise in similar contexts for other declarative
languages, e.g., SMIL, and the solutions presented here can also be
extended to those systems.

Categories and Subject Descriptors: I.7.2 [Document Prepara-
tion]: Hypertext/hypermedia, Language and systems, Standards

General Terms: Algorithms, Languages, Standardization

Keywords: NCL Raw profile; NCL players; web-based players

1. INTRODUCTION
Authoring hypermedia applications using imperative languages like
Java, C, and C++, or scripting languages like JavaScript is usu-
ally more complex and error-prone than using declarative, domain-
specific languages such as NCL [2, 8] or SMIL [4]. Declarative
descriptions are generally easier to be devised and understood than
imperative ones, which usually require programming expertise. The
declarative approach also has advantages from an engineering point
of view: It makes easier to maintain and reuse content, as opposed
to the purely imperative approach. So is the case of NCL (Nested
Context Language).

Copyright© 2013 ACM. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use; not for redistribution. The definitive
version was published in WebMedia’13, http://dx.doi.org/10.1145/2526188.2526217.

NCL is a declarative language for the specification of interac-
tive multimedia presentations. NCL has a strict separation between
application content and application structure. The language does
not define any media itself; instead, it defines the glue that re-
lates media objects in time and space, during multimedia presenta-
tions. The language flexibility, its reuse facility, multi-device sup-
port, presentation adaptability, API for building and modifying ap-
plications on-the-fly, and mainly, its ability for easily defining the
spatial and temporal synchronization of media objects (including
viewer interactions) make it an adequate solution for different mul-
timedia application domains. For particular procedural needs, e.g.,
when complex, dynamic content generation is needed, NCL pro-
vides support for the use of imperative scripts written in Lua [7], a
fast and lightweight scripting language.

NCL has been primarily used for developing interactive multi-
media applications in digital TV (DTV) domain. Indeed, NCL
is the ITU-T declarative language recommendation for IPTV ser-
vices [8] and the declarative language of the Brazilian ISDB-T ter-
restrial DTV standard [2]. Since other DTV standards use HTML-
based languages as their declarative support, in 2011, the ITU-T
started a liaison process to harmonize the NCL and HTML-based
approaches. On the one hand, NCL is a glue language that does not
restrict nor prescribe media-object type, so it can embed HTML
applications naturally as one of its media objects. (This feature
is natively supported in both the ISDB-T standard and the ITU-T
H.761 recommendation.) On the other hand, embedding NCL into
an HTML-based DTV middleware is also possible and has been
done, e.g., in the HbbTV [12] proprietary platforms. However, a
platform independent solution is still missing.

NCL has also been available for publishing multimedia applica-
tions on the Web, but the lack of widely deployed tools has limited
its impact. Trying to fill this gap, our group developed a browser
plug-in, the Ginga Plug-in [13], for the Firefox and Chrome Web
browsers, which contains the player of the reference implementa-
tion of Ginga-NCL. More recently, with the advance of HTML5 [3]
and, in particular, of its graphic, audio, and video support, it be-
came possible to develop standard-based applications that run na-
tively in Web browsers. NCL4Web [14] and WebNCL [11] follow
this approach.

However, the aforementioned solutions for embedding NCL into
HTML pages (Ginga Plug-in, NCL4Web, and WebNCL) have per-
sisted in the same shortcoming: They try to embed a player for the
EDTV (Enhanced DTV) profile of NCL. The NCL EDTV profile
has redundant constructs, which can be removed, giving rise to a
simplified profile, called the NCL Raw profile. A player for the
NCL Raw profile is easier to be designed and implemented than a
player for the NCL EDTV profile. Moreover, such a player might
implement a well-defined API for media objects, including media

objects with HTML code and media objects with embedded NCL
code (i.e., nested NCL applications), which allows for embedding
more than one NCL into an HTML page, as NCL4Web and Web-
NCL do, and also makes possible to relate both the HTML host
application and the embedded NCL application—similar to the so-
lution adopted by Ginga Plug-in.

In this paper, we discuss how the solutions presented by NCL4-
Web, WebNCL, and Ginga Plug-in can be tuned to overcome some
problems pointed their authors. The same problems arise in sim-
ilar contexts for other declarative languages, e.g., SMIL, and the
solutions presented here can also be extended to those systems.

The rest of the paper is organized as follows. Section 2 discusses
how a foreign language player can be embedded into an HTML
browser, since this is the target engine we discuss in this paper.
Section 3 presents some related work. Section 4 introduces the
NCL Raw profile. Section 5 discusses the conversion of EDTV pro-
file constructs into equivalent Raw profile constructs, and presents
the approach we propose for embedding NCL players into HTML
browsers. Finally, Section 6 concludes the paper.

2. RUNNING FOREIGN LANGUAGE
APPLICATIONS IN HTML BROWSERS

There are at least three usual approaches to run a foreign language
application in an HTML browser.

1. Use a browser plug-in containing the foreign language player.
2. Implement the foreign language player in JavaScript.
3. Use XSLT1 to translate the foreign language application into

an equivalent application in HTML+CSS+JavaScript.

The main disadvantage of approach (1) is that it is platform depen-
dent. Nevertheless, plug-ins usually have a better performance and
this can make a difference, especially when the presentation of sev-
eral media objects must be synchronized in time and space. Ginga
Plug-in [13] and SMIL State [9] together with the Ambulant SMIL
Player2 are examples of this approach, as discussed in Section 3.

In approach (2), there are, basically, two possibilities: (i) use
the HTML browser media players to exhibit the media content of
the foreign language application; or (ii) implement custom media
players in JavaScript using its Canvas API. At least with the current
state of HTML5 canvas API, the first variant seems to be more
feasible. In this variant, the foreign language application entities
are converted into HTML entities and a JavaScript library controls
the multimedia presentation. The conversion to HTML can be done
in its entirety before the starting of the application, or it can be done
incrementally, during the presentation of the application. This is the
approach followed by SmilingWeb [6] and WebNCL [11].

In approach (3), the foreign language application is converted
into an equivalent HTML+CSS+JavaScript application. Since most
HTML browsers support XSLT, this solution may be considered
platform independent, like approach (2). Furthermore, in this vari-
ant we can explore the possibility of having the conversion done
in server side, and not only in the client side. Indeed, if the con-
version is done in the server side there is no need to be attained
to an XSLT converter to be platform independent; one could use
any language, which then is converted to HTML+JavaScript+CSS.
NCL4Web [14] follows this approach, realizing the conversion at
the client side, i.e., by the HTML browser via XSLT.

3. RELATED WORK
SMIL State [9] combines the SMIL [4] language with an external
data model, specified in the XForms3 declarative language, allow-
ing for this data model to be shared with other components and,
effectively, enabling its use as an API between components of an
application. In particular, the data model is proposed as the way
SMIL can communicate with its plug-ins and how SMIL can be
embedded in another host player as a plug-in. The use of the shared
data model as the communication paradigm between components
decouples dependencies between these components: they only de-
pend on a common understanding of the data model. The exter-
nal data model allows for communication through setting values to
variables by one side that can cause some action on the other com-
munication side. This language bridge works fine from the SMIL
side. The problem is on the other side of the bridge: As only SMIL
State and XForms currently share the proposed data model, the in-
tegration into other languages requires some glue code. Following
this direction, SMIL State [9] was implemented in the open-source
Ambulant SMIL player plug-in for WebKit browsers. In the proto-
type, the glue is implemented with JavaScript code, which is trig-
gered by DOM events when the data model changes.

A slightly different approach is used by Ginga Plug-in [13]. It
defines an API that enables the host system (the HTML browser) to
execute a series of actions, including those for controlling the plug-
in life-cycle, e.g., pause, resume, or abort actions. The same API
is used to answer to commands coming from the host system and
to internal events, that occur during the plug-in execution. Unlike
SMIL State, the reported events are not limited to those resulting
from the attribution of variables. The NCL player API, part of the
general API defined by the Ginga Plug-in, is inherited by the ap-
proach proposed in Section 5.

Timesheet.js [5] is an open-source library that supports the com-
mon subset of the SMIL Timing4 and SMIL Timesheets [15] styling
specifications. The approach uses HTML5+CSS3 for structuring
and styling the multimedia content. Inline SMIL Timing elements
can be inserted in the HTML document to handle timing, media
synchronization, and user interaction. SMIL time constructs can
also be inserted via an external timesheet. Timesheet.js, however,
does not translate the entire SMIL language; it translates only its
timing functionality, so it can be used on the Web. Moreover, in
Timesheet.js, the SMIL time containers expose a significant part
of the HTMLMediaElement API, which enables JavaScript code to
control the SMIL time containers via the usual play and pause
methods, check the current time via currentTime property, and
receive timeupdateDOM events. As a consequence, a SMIL time
container can be related to any other HTML5 element or other em-
bedded SMIL time containers. This feature is also supported by
Ginga Plug-in.

SimilingWeb [6] is a SMIL player that runs on any Web browser
that supports HTML5. It uses a JavaScript library to control the
presentation of the application. The current version of the player
does not support all SMIL tags.

WebNCL [11] takes the same direction of SmilingWeb, in this
case, however, to embed an NCL player into HTML5 browsers. In
WebNCL, the NCL parser component translates the NCL document
into the NCL Representation Model, an internal data structure that
represents the NCL elements, e.g., link, media, connector, etc. The

1http://www.w3.org/TR/xslt
2http://www.ambulantplayer.org/
3http://www.w3.org/MarkUp/Forms/
4http://www.w3.org/TR/SMIL3/smil-timing.html

http://www.w3.org/TR/xslt
http://www.ambulantplayer.org/
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/TR/SMIL3/smil-timing.html

Table 1. Characteristics of the embedment approaches.

SMIL State Ginga Plug-in Timesheet.js SmilingWeb WebNCL NCL4Web

Source language SMIL NCL SMIL (Timing) SMIL NCL NCL

Embedment approach plug-in plug-in inline JavaScript
compilation

JavaScript
incremental
compilation

XSLT
compilation

Supports all features of the language Yes Yes No No No No

Can embed more than one player Yes Yes Yes ? Yes No

Defines a control/notification API Yes Yes Yes No Partially Partially

Uses the media players of the browser No No Yes Yes Yes Yes

NCL Player Manager component controls the creation and destruc-
tion of HTML elements corresponding to the NCL specification
and keeps track of the active media players, i.e., the media players
controlled by the browser. The HTML5 elements corresponding
to the NCL elements in the representation model are created incre-
mentally (on demand) by the WebNCL player.

Melo et al. [11] argue that, in an NCL presentation, computer
power is required more to media presentation than to media or-
chestration. Since the HTML browser is responsible for media
presentation, and since browsers are usually implemented in na-
tive language, the performance difference between WebNCL and a
native-code NCL player plugin would be irrelevant. This argument
must be pondered considering synchronization issues in low-end
platforms, like those found in DTV receivers. Nevertheless, Web-
NCL is certainly an adequate solution for high-end receivers.

NCL4Web [14], unlike WebNCL, transforms all NCL code into
HTML+CSS+JavaScript before the whole presentation starts. A
JavaScript file, called “ncl-complements.js,” is inserted in the trans-
lated document; this file contains common function used by ev-
ery translated NCL document, and manages user interactions. In-
stead of using JavaScript, the translation is done using an XSLT
stylesheet. NCL4Web supports more NCL tags than WebNCL,
e.g., switches and rules. Although NCL4Web proponents only ex-
plore client side conversion, the translation could also be realized
in server side. This would allow for using the approach in Web
browsers that do not support XSLT, e.g., some Android browsers.

More than one WebNCL presentation machine can be embedded
in the same HTML page. NCL4Web was designed for presenting
a standalone NCL application, but it can embedded in a Web page
through using the HTML <iframe> element. However, in both
solutions, an API for relating the embedded NCL applications was
only partially defined. Both solutions rely on DOM events to report
events coming from NCL presentations, although WebNCL also
provides an API to post events to NCL entities.

The related works presented in this section rely on a language
player engine embedded in HTML browsers that can be either im-
plemented in some platform dependent language, which is the case
of the plug-in approaches, or implemented in JavaScript. With
the exception of Timesheet.js, which is intended for incorporating
into HTML5 only the timing functionality of SMIL, all works aim
at playing its source hypermedia language embedded in HTML.
Moreover, these works try to convert a language profile that was
conceived to help application authors, and thus is full of syntactic
sugar and reuse features. This is one of the reasons why, except in
the case of plug-ins, none of the players was able to contemplate
the full expressiveness of its source language. Table 1 goes over
the main points of these approaches.

In this paper, we argue that even in the case of plug-ins, the syn-
tactic sugar and reuse features of the target language should be re-
moved in an initial conversion step, before any of the solutions take

place. Moreover, we also advocate the use of the Ginga Plug-in API
by presentation engines targeting NCL. The next sections discuss
the advantages of the proposed approach.

4. NCL RAW PROFILE
The authoring and presentation of hypermedia documents can be
considered as the answer to four general questions: what to present,
where, how, and when. To help authors in answering these four
questions, several hypermedia specification languages have been
proposed, like HTML, NCL, SMIL, etc. All these languages define
much more than the needed entities to answer the questions, trying
to help authors to logically structure the document specification, to
choose between content alternatives, etc. All these languages also
have reuse features and syntactic sugar add-ons to easy even more
the authoring process.

However, language players should use data models as close as
possible to the presentation engine’s execution platform, to make a
better use of the platform resources and to achieve an efficient and
reliable implementation.

The different goals of the specification language data model and
the player data model make them semantically distant. As a con-
sequence, the process of converting one into another, during docu-
ment presentation, can be complex and error-prone.

The solution usually adopted by language players, including all
related work discussed in Section 3, is to sacrifice the presenta-
tion engine conception, obliging it to perform using a high-level
data model. This alternative, although possible, especially in high
performance platforms can lead to implementations that are more
prone to efficiency and reliability problems due to code with redun-
dant logic in the interpreter program.

An alternative for this approach come from identifying and defin-
ing procedures for redundancy removal in hypermedia specification
languages. In doing this, we are, at the same time, giving a precise
semantics for redundant elements and identifying which parts of
our interpreter’s code are likely to contain duplicated logic.

On the semantics side, we gain by trimming our specification.
Each redundancy removal procedure functions as a precise defini-
tion for the removed element. Thus, given these procedures, we get
a complete specification by just defining the behavior of the primi-
tive elements. This approach also helps in formalizing, debugging,
and maintaining the specification, because it keeps primitive be-
havior clearly separated from derived behavior. Here we consider
primitive those concepts that are kept (they should be as minimum
as possible) in the original conceptual model; and we consider de-
rived the redundant concepts, identified by the removal procedures.

On the presentation engine side, the separation between what is
primitive form what is derived induces, in terms of program logic, a
similar separation between what should be compiled, or converted,
from what should be interpreted.

In other words, the solution can come from introducing an in-
termediate conceptual data model. The problem is then moved to
correctly choose this new data model to have both a translation pro-
cess from the authoring data model to this intermediate data model,
and another translation process, as a second step, towards a presen-
tation data model simple enough that makes the implementation of
converters and presentation engines simpler.

This intermediate conceptual data model can define an abstract
syntax notation to which an authoring language can be compiled
and from which the engine presentation model can be extracted.
The intermediate syntax notation must have at least the same ex-
pressiveness of the authoring language. Ideally, it could have the
expressiveness of different target authoring languages, allowing for
application written in these different languages to share the com-
mon intermediate abstract syntax notation and thus share the same
application player.

The first step in this direction was the definition of the NCL Raw
profile [10]. The NCL Raw profile has been designed to allow sim-
ple converters for the NCL 3.0 EDTV profile and to allow a simpler
Ginga-NCL implementation. It should be stressed that the profile
goal is not the authoring process but to act as an intermediate lan-
guage withing the conversion process.

The definition of the NCL Raw profile allows for its use not only
in the client side, but also as the basis of a new transfer syntax. In
this case, the conversion process could be done in the server side.
This approach has some advantages. First, it allows for a simpler
interpretation procedure at the client side. Since the client (receiver
device) is usually a platform with limited resources, this can be an
advantage. Second, as the Raw profile is not tailored for authoring,
since it is less structured and has few reuse features, applications
written in this profile are usually more difficult to be understood
and thus, to be reverse engineered. Third, and the main one, the
Raw profile can act as an intermediate notation for converters of
other declarative languages. Thus the authoring phase can use lan-
guages other than NCL, without imposing any additional load on
the receiver. Therefore, the NCL Raw profile can act as a liaison
transfer syntax among several declarative hypermedia languages.
This is an interesting point to be worked in the future.

The NCL Raw profile is backwards compatible; thus a Raw pro-
file application should be able to run in any EDTV compatible
player. In fact, this compatibility principle guided the profile de-
sign. Therefore, Ginga Plug-in, WebNCL, and NCL4Web are al-
ready able to run applications developed in the NCL Raw profile. In
doing this, some of the limitations of the current implementations
would vanish. For example, WebNCL would support, indirectly,
the <switch> element. However, in Section 5 we go further: we
propose the incorporation of the NCL Raw profile converter in the
architecture of any NCL EDTV player, including those mentioned
in this paper.

4.1 NCL Raw Profile Schema
Most redundant elements and attributes of NCL 3.0 EDTV profile
were removed in defining the NCL Raw profile. Table 2 presents
the elements of the NCL 3.0 Raw profile. In the table, parentheses
are used for grouping, the symbol (|) read as “or,” (?) read as “zero
or one,” (*) read as “zero or more,” and (+) read as “one or more.”
Child element order is not specified. Moreover, for simplicity, only
the <link> and <causalConnector> elements of the Linking and
Extended CausalConnectorFunctionality modules of NCL 3.0 are
presented.

The schemas of the NCL Raw profile can be downloaded from

http://www.ncl.org.br/NCL3.0/RawProfile

In short, the 45 elements of NCL 3.0 EDTV profile were reduced
to 22 in the Raw profile. Section 5.1 details the conversion process
of NCL 3.0 EDTV profile documents into equivalent NCL 3.0 Raw
profile documents.

Table 2. The NCL 3.0 Raw Profile.
Element Content

<ncl> (<head>?, <body>?)
<head> (<causalConnector>)*
<body> (<port> | <property> | <media>

| <context> | <link>)*
<media> (<area> | <property>)*
<context> (<port> | <property> | <media>

| <context> | <link>)*
<area> -
<port> -
<property> -
<link> (<bind>)+
<causal-
Connector>

(
(<simpleCondition> | <compoundCondition>),

(<simpleAction> | <compoundAction>)
)

5. EMBEDDING NCL APPLICATIONS
We propose a new approach for the architecture of NCL players
with, at least, two translation phases: from NCL EDTV profile to
NCL Raw profile, and then to the data model of the NCL Raw
player. This process is illustrated in Figure 1, in which the Raw
Converter module is in charge of the first step, and the Data Model
Converter is in charge of the second step.

Figure 1. The conversion flow.

EDTV Raw
Converter Raw Data Model

Converter
Player

Note that if the NCL Raw player is embedded into another lan-
guage player, like an HTML browser, the Data Model Converter,
in Figure 1, should be divided into two further steps: (i) trans-
lating (usually, compiling) from NCL Raw profile to the language
of the host environment, and then (ii) translating (interpreting) the
result of the previous step into the execution data model of the host
environment. Note also that the Raw Converter module can be im-
plemented in the server side, as discussed in Section 4.

5.1 NCL Raw Profile Converters
In the NCL Raw profile, <media> and <context> properties must
be defined using only <property> elements. Moreover, the Lay-
out, Descriptor, and DescriptorControl modules of NCL 3.0 were
removed. Since all properties must be defined in <property> el-
ements, the externable attribute is used to determine if the given
property may be referenced by links and ports.

As an example conversion, consider the conversion of <region>
elements. The <region> element defines the position and size pa-
rameters of <descriptor> elements, which can be associated to
<media> elements. Regions are declared within <regionBase>
elements and may be nested to any level, so that a child region may

http://www.ncl.org.br/NCL3.0/RawProfile

define its attributes in relation to it’s parent’s attributes. We elim-
inate a region by converting its attributes (except id) into param-
eters of the associated descriptors, which later are converted into
media properties. (Note that descriptors may also be referenced by
<bind> elements; thus the need for the two conversion steps.) The
transformation of <region> attributes into <descriptorParam>
elements is straightforward if (i) the attribute belongs to a root re-
gion, i.e., a region that is an immediate child of a <regionBase>
element; (ii) the attribute is zIndex; or (iii) the attribute is width or
height and its value is given in pixels. In these cases, all we have to
do is to insert a corresponding <descriptorParam> element into
the associated descriptors.5 Thus, e.g., the excerpt

<region id=’r’ width=’10px’ zIndex=’1’/>

· · ·
<descriptor id=’d0’ region=’r’/>

<descriptor id=’d1’ region=’r’/>

reduces to

<descriptor id=’d0’>

<descriptorParam name=’width’ value=’10px’/>

<descriptorParam name=’zIndex’ value=’1’/>

</descriptor>

<descriptor id=’d1’>

<descriptorParam name=’width’ value=’10px’/>

<descriptorParam name=’zIndex’ value=’1’/>

</descriptor>

If, however, conditions (i)–(iii) are false, we must calculate the
value of the region attribute in relation to its parent’s attribute,
which is either obtained by rules (i)–(iii) or must be calculated from
its parent’s parent’s attribute, and so on. Let P(r) denote the par-
ent region of a child region r, and let r[a] denote the value of at-
tribute a of r. Then the value of r[a] in relation to P(r) is given by
the “unnest” function U such that

U(r, a) =

r[a] if (i), (ii), or (iii) hold for r or a

r[a] · U(P(r), a
)

if a = Awh

r[a] + U
(
P(r), a

)
if a = Atblr and r[a], U

(
P(r), a

)
are in pixels

r[a] · U(P(r), Ah
)

+ U
(
P(r), a

) if a = Atb and r[a] is in % and both
U
(
P(r), Ah

)
, U
(
P(r), a

)
are in pixels or %

r[a] · U(P(r), Aw
)

+ U
(
P(r), a

) if a = Alr and r[a] is in % and both
U
(
P(r), Aw

)
, U
(
P(r), a) are in pixels or %

↑ (undefined) otherwise,

where Ax1 x2 ...xn stands for width, height, top, bottom, left, or right
whenever xi = w, h, t, b, l, r, for 1 ≤ i ≤ n. The cases where U(r, a)
is undefined are those where we end up adding a pixel value to a
percentage of screen’s width or height, which cannot be done in
conversion time because screen dimension is unknown.

The TransitionBase and BasicTransition modules were also re-
moved from the EDTV profile in defining the Raw profile. Transi-
tions are assumed to be media object’s exhibition properties to be
defined in <property> elements.

The Raw profile does not support any importing facility. Thus
elements can only refer to elements defined in the same NCL docu-
ment. This means that the refer attribute can only have an id value
5Note that a region may be referred by multiple descriptors, but each de-
scriptor may refer to at most one region.

defined in the same document. Moreover, syntactic reuse is not al-
lowed. Reuse is only allowed for presentation objects. Thus the
instance attribute of <media> elements can only contain the values
“instSame” or “gradSame.”

We could have removed the <context> element, since it does
not have a relevant role in presentation scheduling. But we have
decided to keep it because it is required for document structuring,
which can be helpful in the client side if live-editing is allowed
and if link actions may be applied to a set of objects. The <body>
element was kept in the Raw profile only for compatibility with the
EDTV profile.

In the NCL Raw profile, content alternatives are not chosen from
a <switch> element, instead, they are selected by links that test
the global settings node of NCL. Thus the TestRule, TestRuleUse,
ContentControl, and SwitchInterface were removed.

As another example conversion, we present the conversion of
<switch> elements. The <switch> element defines a mutually
exclusive set of <media>, <context>, or other <switch> compo-
nents whose presentation depends on the evaluation of associated
rules. A rule is a Boolean expression defined in the header sec-
tion of the document, by <rule> or <compositeRule> elements;
these are associated with the switch components via <bindRule>
elements.

When we start a switch, its rules are evaluated in order of dec-
laration. If a valid rule is found, the component associated with
this rule is presented and no other rule is evaluated. If, however,
no valid rule is found, either the default component, defined by the
<defaultComponent> element, is presented, or no component is
presented, in case there is no default.

We eliminate a switch by converting it into a specially crafted
context that use links to implement the switch’s logic. Before pre-
senting the conversion algorithm, we define the semantics of the
switch element. We deal first with the simplified case of switches
that do not contain <switchPort> elements. The semantics and
conversion algorithm for switches containing <switchPort> ele-
ments builds on the simplified case and will be given later.

Let S be a switch containing a list x1, x2, . . . , xm of <media>,
<context>, or other <switch> elements, and a list b1, b2, . . . ,
bn of <bindRule> elements. Without loss of generality, assume
that m = n and that, for all 1 ≤ i ≤ n, component xi is asso-
ciated with bind-rule bi, i.e., bi[constituent] = xi[id]. (We may
safely assume this because the switch semantics ignores dangling
<bindRule> elements or components that are not referenced by
any <bindRule> or <defaultComponent> elements.) Assume
further that bi is declared immediately before bi+1 in S . Then the
algorithm for selecting which component of S is started when S is
started is given by function G such that

G(S) =

x1 if V
(
R(b1)

)
x2 if ¬V

(
R(b1)

) ∧ V
(
R(b2)

)
...

...

xn if ¬V
(
R(b1)

) ∧ · · · ∧ ¬V
(
R(bn−1)

) ∧ V
(
R(bn)

)
xd if¬V

(
R(b1)

) ∧ · · · ∧ ¬V
(
R(bn−1)

) ∧ ¬V
(
R(bn)

)
and xd is the default component of S

ε (none) otherwise,

where R is a function that returns the <rule> or <compositeRule>
element referenced by a given <bindRule> element, and V is a
unary predicate on the set of rules such that V(r) holds iff (if, and
only if) at the moment S started, rule r evaluates to true.

Let S be a switch containing no <switchPort> element. Then
the algorithm for removing S from an arbitrary NCL document
consists of the following six steps.

Step 1. Create an empty context C such that C[id] = S [id].
Step 2. Insert into C a <media> element, with unique identi-

fier w, of the form

<media id=w refer=w′ instance=’instSame’/>

where w′ is the identifier of the document settings node, i.e., the
media object that contains the global properties to be tested.

Step 3. Insert into C an empty <media> element, with unique
identifier t of the form

<media id=t/>

and a <port> element, with unique identifier t′, pointing to t, of
the form

<port id=t′ component=t/>

Media t is used to trigger the links inserted in the next step.
Step 4. For each <bindRule> element bi, such that bi is the i-th

element in the ordered list of <bindRule> elements of S , insert
into context C a new link of the form

<link xconnector=K>
<bind role=’onBegin’ component=t/>
<bind role=bi[rule]1 component=w
interface=R1

(
R(bi))[var]/>

<bind role=bi[rule]2 component=w
interface=R2

(
R(bi))[var]/>

· · ·
<bind role=bi[rule]k component=w
interface=Rk

(
R(bi))[var]/>

<bind role=’start’ component=bi[constituent]/>
<bind role=’stop’ component=t[id]/>

</link>

where R j is a function that returns the j-th <rule> element in the
tree defined by a given <rule> or <compositeRule> element. In
addition, insert into the document’s connector base a new causal
connector, with unique identifier K, of the form

<causalConnector id=K>
<compoundCondition operator=’and’>

<simpleCondition role=’onBegin’/>

<compoundStatement operator=’and’>

Ā
(
R(b1)

)
Ā
(
R(b2)

) · · · Ā
(
R(bbi−1)

)
A
(
R(bbi)

)
</compoundStatement>

</compoundCondition>

<compoundAction operator=’seq’>

<simpleAction role=’start’/>

<simpleAction role=’stop’/>

</compoundAction>

</causalConnector>

where A is a function that converts a given rule into an equivalent
<assessmentStatement> block and Ā denotes the negation of A;
these functions are precisely defined below.

Step 5. If S contains a <defaultComponent> element xd, then
insert into C a new link-connector pair, similar to those inserted
in the previous step, which starts xd and whose main assessment
statement is a conjunction of

Ā
(
R(b1)

)
Ā
(
R(b2)

) · · · Ā
(
R(bi−1)

)
Ā
(
R(bi)

)
.

Step 6. Finally, replace the switch S by context C.
The aforementioned function A, which converts a rule r into an

equivalent <assessmentStatement> block, is defined as follows.
If r is the j-th <rule> element encountered so far (starting at 1),
then A(r) is equal to

<assessmentStatement comparator=r[comparator]>
<attributeAssessment role=r[id] j
eventType=’attribution’/>

<valueAssessment value=r[value]/>
</assessmentStatement>

Otherwise, if r is a <compositeRule> element containing a list r1,
r2, . . . , rn of member rules, then A(r) is equal to

<compoundStatement operator=r[comparator]>
A(r1) A(r2) · · · A(rn)

</compoundStatement>

The function Ā, which converts a rule r into an <assessment-
Statement> element that is equivalent to the negation of r, is
defined by adding the attribute-value pair isNegated=“true” to the
root element of the tree returned by A(r).

We proceed to prove (informally) the correctness of the previ-
ous switch removal algorithm. Let S be a switch containing no
<switchPort> element, and let C be the context generated by the
preceding algorithm. We want to show that

1. G(S) = x iff x is the only component of C that gets started
after C is started; and

2. G(S) = ε iff no component gets started after C is started.
We shall prove the if-part of statement (1); the proof of the only-
if-part of (1) and of both parts of (2) proceed in a similar fashion.
Suppose G(S) = x, for some x in S . There are two possibilities:
Either (i) there is a <bindRule> bi such that bi refers to x and

(†) ¬V
(
R(b1)

) ∧ ¬V
(
R(b2)

) ∧ · · · ∧ ¬V
(
R(bi−1)

) ∧ V
(
R(bi)

)
,

or (ii) x is the <defaultComponent> of S and, for all i, ¬V
(
R(bi)

)
.

We proceed to prove case (i); again, the proof of case (ii) is similar.
Suppose that case (i) holds. Then, by the fourth step of the preced-
ing algorithm, there is a link ℓ in context C that starts x immediately
after C only if the conjunction of the series of statements

(‡) Ā
(
R(b1)

)
Ā
(
R(b2)

) · · · Ā
(
R(bi−1)

)
A
(
R(bi)

)
evaluates to true. By construction, for all r, A(r) evaluates to true
iff V(r); and Ā(r) evaluates to true iff ¬V(r). Thus (†) implies (‡).
Therefore, if we start C the condition of link ℓ is satisfied and x
is started; moreover, no other link of C is satisfied, since they
contain either an assessment statement of the form A

(
R(b j)

)
, for

some 1 ≤ j < i, which evaluates to false since ¬V
(
R(b j)

)
, or an

assessment statement of the form Ā
(
R(bi)

)
, which also evaluates to

false since V
(
R(bi)

)
. Q. E. D.

We can easily extend the previous algorithm to deal with switches
containing <switchPort> elements. This general version consists
of the following five steps. Step 1. Create a context C to repre-
sent S . Step 2. For each <switchPort> element p in S , apply
steps 1–5 of the previous algorithm to obtain a context Cp that rep-
resents the sub-switch defined by the switch-port p, i.e., that con-
taining only the <media> elements referenced by the <mapping>
elements of p and the corresponding <bindRule> elements, and
insert Cp into C. Furthermore, insert into C a <port> element p′

such that p′[id] = p[id]. Step 3. Use steps 1–5 of the previous algo-
rithm to obtain a context CS , which will represent S , but this time
considering all its components and <bindRule> elements, and in-
sert CS into C. Moreover, insert into C a <port> element, with

unique identifier q, pointing to CS . Step 4. Update the links that
reference S directly, i.e., without specifying a switch-port, to point
to port q of C. Step 5. Finally, replace S by C.

5.2 NCL Player API
In implementing a player for the Raw profile of NCL it is important
to use the Player API defined by Ginga Plug-in, which is recom-
mended for embedded NCL applications in the ITU-T reference
implementation of Ginga-NCL. In obeying this API, it will be pos-
sible to relate more than one NCL embedded application to each
other, and to relate an NCL application to host language elements,
e.g., HTML elements. It is also important to implement the input-
ControlNotification API to allow the NCL player to pass an gain
control of the input devices. Reference [13] presents these APIs
and discusses their use by the Ginga Plug-in implementation, to-
gether with some application use cases.

6. CONCLUSIONS
This paper recognizes the potential of HTML5 browsers in turn-
ing JavaScript into a target language for compilers (or converters)
of other high-level languages. The wide distribution of HTML
browsers can make JavaScript an important tool for bursting other
language applications in the Web. Taking this into account, this
paper also recognizes the importance of works like Ginga Plug-
in, WebNCL, and NCL4Web in helping disseminate NCL applica-
tions. Contributing to those works, this paper encourages the use
of NCL Raw profile as the target profile for NCL players, to allow
for a simplified but complete implementation of the presentation
engine.

Even if the developers of Ginga Plug-in, WebNCL, and NCL4-
Web do not follow our suggestions, the conversion of NCL EDTV
applications to NCL Raw profile application in the server side could
use those players with advantages. For example, some features not
supported today would become available.

However, the re-factoring of the current NCL players to sup-
port the “conversion flow” depicted in Figure 1 would allow for
a simpler interpretation procedure in the client side, and therefore,
probably smaller and less prone to bugs. Moreover, the NCL Raw
profile can act as an intermediate syntax notation for converters of
other declarative languages. Hence, in the authoring phase, lan-
guages other than NCL, more tailored to user’s flavor, could be
used without imposing any additional load on receivers. We are
currently working on this issue in the definition of CASyNo, a com-
mon abstract syntax notation for hypermedia languages. For now,
NCL Raw profile does not introduce features particular to other
languages neither features to support the new NCL 4.0, e.g., those
features coming from 3D object support.

We have a partial implementation of an EDTV to Raw profile
converter tool, called DietNCL.6 We are also working on an new
NCL player for the Raw profile. These implementations are help-
ing us to fine tune the semantics of NCL EDTV profile, since each
redundancy removal procedure functions as a precise definition of
the removed element. This approach also helps in formalizing, de-
bugging, and maintaining the specification, because it keeps the
primitive behavior clearly separated from the derived behavior.

In another direction, we are also planning to use a non-XML syn-
tax for Raw profile by translating it, e.g., into MPEG-4 BIFS [1].

6Available at http://www.telemidia.puc-rio.br/~gflima

ACKNOWLEDGMENTS
This work was partially supported by the Brazilian CNPq, CAPES,
and FAPERJ funding agencies, and by the Brazilian Ministry of
Science, Research, and Innovation.

http://www.telemidia.puc-rio.br/~gflima

REFERENCES
[1] 14496-11:2005, I. Information technology – Coding of audio-

visual objects – Part 11: Scene description and application
engine. 2005.

[2] ABNT NBR 15606-2. Digital Terrestrial TV – Data cod-
ing and transmission specification for digital broadcasting –
Part 2: Ginga-NCL for fixed and mobile receivers: XML ap-
plication language for application coding. ABNT, São Paulo,
SP, Brazil, November 2007.

[3] Berjon, R., Faulkner, S., Leithead, T., Navara, E. D.,
O’Connor, E., Pfeiffer, S., and Hickson, I. HTML5: A vo-
cabulary and associated APIs, for HTML and XHTML. Can-
didate recommendation, W3C, August 2012.

[4] Bulterman, D. C., and Rutledge, L. W. SMIL 3.0: Flexi-
ble Multimedia for Web, Mobile Devices and Daisy Talking
Books, 2nd ed. Springer, 2008.

[5] Cazenave, F., Quint, V., and Roisin, C. Timesheets.js: when
SMIL meets HTML5 and CSS3. In Proceedings of the 11th
ACM Symposium on Document Engineering - DocEng’11
(2011), ACM, New York, NY, USA, pp. 43–52.

[6] Gaggi, O., and Danese, L. A SMIL player for any web
browser. In Proceedings of the 17th International Conference
on Distributed Multimedia Systems - DMS 2011 (Forence,
Italy, August 2011), ACM, New York, NY, USA, pp. 114–
119.

[7] Ierusalimschy, R. Programming in Lua, 2nd ed. Lua.Org,
2006.

[8] ITU-T Recommendation H.761. Nested Context Language
(NCL) and Ginga-NCL for IPTV Services. ITU-T, Geneva,
Switzerland, April 2009.

[9] Jansen, J., and Bulterman, D. C. A. SMIL State: An archi-
tecture and implementation for adaptive time-based web ap-
plications. Multimedia Tools and Applications 43, 3 (2009),
203–224.

[10] Lima, G. A. F., Soares, L. F. G., Neto, C. S. S., Moreno,
M. F., Costa, R. R., andMoreno, M. F. Towards the NCL Raw
Profile. In II Workshop de TV Digital Interativa (WTVDI)
- Colocated with ACM WebMedia’10 (Belo Horizonte, MG,
Brazil, October 2010).

[11] Melo, E. L., Viel, C. C., Teixeira, C. A. C., Rondon, A. C.,
Silva, D. d. P., Rodrigues, D. G., and Silva, E. C. WebNCL: A
Web-based presentation machine for multimedia documents.
In Proceedings of the 18th Brazilian Symposium on Multi-
media and the Web - WebMedia’12 (São Paulo, SP, Brazil,
October 2012), ACM, New York, NY, USA, pp. 403–410.

[12] Merkel, K. HbbTV: A hybrid broadcast-broadband system
for the living room. In Proceedings of the European Broad-
casting Union (Geneva, Switzerland, 2010).

[13] Moreno, M. F., Marinho, R. S., and Soares, L. F. G. Ginga-
NCL architecture for plug-ins. In Proceedings of the 1st Work-
shop on Developing Tools as Plug-ins - TOPI’11 (Waikiki,
Honolulu, HI, USA, 2011), ACM, New York, NY, USA,
pp. 12–15.

[14] Silva, E., Saade, D. C. M., and Santos, J. D. NCL4WEB -
Translating NCL applications to HTML5 Web pages. In Pro-
ceedings of the 13th ACM Symposium on Document Engi-
neering - DocEng 2013 (Florence, Italy, September 2013),
ACM, New York, NY, USA.

[15] Vuorimaa, P., Bulterman, D., and Cesar, P. SMIL
Timesheets 1.0. Working draft, W3C, January 2008.

	Introduction
	Running Foreign Language Applications in HTML Browsers
	Related Work
	NCL Raw Profile
	NCL Raw Profile Schema

	Embedding NCL Applications
	NCL Raw Profile Converters
	NCL Player API

	Conclusions

