
The Smix synchronous multimedia language:
Operational semantics and coroutine implementation

Guilherme F. Lima1, Christiano Braga2, and Edward Hermann Haeusler1

1 PUC-Rio, Rio de Janeiro, Brazil
{glima,hermann}@inf.puc-rio.br

2 UFF, Niterói, Brazil
cbraga@ic.uff.br

Abstract. Smix is a domain-specific language for the construction of interactive
multimedia presentations. Its programs describe how media objects (texts, images,
videos, etc.) should be presented and how external events, such as the passage
of time or user interaction, affect their presentation. What distinguishes Smix
from similar high-level multimedia languages, such as NCL, SMIL, and HTML,
is first is simplicity: the language has only three main concepts (media object,
action, and link) which can nonetheless be used to program complex multimedia
applications. The second distinguishing characteristic of Smix is its synchronous,
deterministic semantics, which induces a precise notion of logical time. In this
paper, we introduce the Smix language, present two versions of its synchronous
semantics, equational and linear, both in big-step operational style, and discuss a
novel, straightforward implementation of its linear semantics using Lua coroutines.

1 Introduction

Smix [10] (Synchronous Mixer) is a domain-specific language for the construction of
interactive multimedia presentations. Its programs use synchrony relations (links) to
describe how media objects (texts, images, videos, etc.) should be presented and how
external events, such as the passage of time or user interaction, affect their presentation.

There are two characteristics that distinguishes Smix from similar high level multi-
media languages, such as NCL, SMIL, and HTML.3 The first one is simplicity. Smix has
only three main concepts, namely, media, action, and link, which can nonetheless be used
to program complex multimedia applications. A simpler language implies in a simpler
semantics and, consequently, a simpler implementation. NCL, SMIL, and HTML, in
contrast, are huge languages with numerous concepts and constructions to represent
them. Despite its simplicity, most NCL concepts can be easily simulated in Smix, as
discussed in [10]; in fact, the Smix language was deliberately designed to serve as an
abstraction layer (the language of a multimedia virtual machine) for the implementation
of other higher-level multimedia languages, in particular, Plain Smix (a syntactically
richer dialect of Smix), NCL, and to a lesser extend, SMIL.

3 NCL is the standard declarative language for interactive applications in the Brazilian digital
terrestrial television system [1] and an ITU-T recommendation for IPTV applications [8]. SMIL
is a widely adopted W3C recommendation [16] for interactive multimedia presentations. And
HTML is a W3C recommendation [17] (and core Web technology) for typesetting hyperlinked
text together with images, and more recently, audio and video.

The second distinguishing characteristic of Smix is its deterministic, synchronous
semantics, which gives its programs a precise notion of logical time. The semantics of
NCL, SMIL and HTML, in contrast, is notoriously complex and obscure, especially in
relation to time [10]. Even on a logical level, these languages treat time as something
external to the system. Its representation and manipulation can be influenced by physical
phenomena, such as processing or communication delays, which are unpredictable or im-
plementation dependent, and which can thus lead to nondeterminism and dyssynchrony.
Smix, on the other hand, is a synchronous language with a semantics that guarantees
determinism and logical correctness. By calling it synchronous, we mean that its pro-
grams operate under the synchronous hypothesis [5], i.e., that they can be viewed as
input-driven systems whose reactions are instantaneous. The synchronous hypothesis
induces a precise notion of logical time in which the only relevant concepts are those of
simultaneity and precedence between events.

In [15] the authors propose a rewriting-logic semantics for NCL, and in [14] the
author proposes an authoring language-independent model for multimedia documents.
There are other proposals of formal semantics for NCL [12] and similar proposals for
SMIL [4]. Most of these works, however, are concerned not with the implementation
of interpreters (which is the main goal of Smix) but with static validation of program
properties, usually within a larger system of user-guided verification. Their models tend
to be complex and impractical, especially if real-time performance is needed.

In this paper, we focus on primarily the formalization of the synchronous semantics
of Smix, and present two versions of it: the equational semantics and the linear semantics.
Both versions follow the operational approach to semantics [13]; the particular style
used is that of big-step (or natural) operational semantics [9]. Both formalizations were
inspired by the formal semantics of the synchronous language Esterel [3,2], and as such
are only concerned with the description of a single program reaction.

The rest of the paper is organized as follows. In Section 2, we introduce the Smix
language and discuss the intuitive behavior of its programs. In Section 3, we present
the equational semantics, which formalizes this intuitive behavior. The problem with
the equational semantics is that it does not guarantee termination in bounded time,
which violates the synchronous hypothesis. In Section 4, we present the linear semantics
that solves this problem by adopting a linear format for programs, which replaces the
equational format, and in which reactions always execute in bounded time. In practice,
before executing a program, the Smix interpreter “linearizes” it, i.e., converts it from the
equational to the linear format. In Section 5, we present a simple implementation of the
linear semantics in a Lua [7] multimedia library augmented with coroutines (Section 5).
Finally, in Section 6 we draw our conclusions and point out future work.

2 The Smix language

Smix is a high-level declarative language for the construction of multimedia presentations.
Its goal is to offer simple but expressive abstractions for the precise representation of
complex audiovisual ideas. A Smix program is a set of media object declarations together
with a sequence of links. A media object is a presentation atom (e.g., image, audio, video,
etc.) and has associated with it an identifier, a content, a state, a time, and a property table.

The identifier uniquely identifies object in the program. The content is a possibly empty
sequence of audiovisual samples. The state is either “occurring” (playing), “paused”,
or “stopped”. The time is the number of clock ticks to which the object was exposed
while in state occurring. And the property table maintains the object properties—their
value determine the characteristics of the object’s presentation, e.g., the value of property
“transparency” determines the transparency applied to its visual samples.

In Smix, media objects are manipulated by actions. There are five possible actions:
start (), stop (), pause (), seek (), and attribution (). The first three actions, start, stop,
and pause, manipulate the object’s state; the last two, seek and set, manipulate the object’s
time and property table. Actions have the general form (predicate ? target : argument),
where the predicate is a propositional logic formula involving the state, time, or property
values of media objects, the target specifies the operation (, , , , or) and main
operand (media object or property) of the action, and the argument is an extra operand
(expression) required by seek and set actions.

The execution of an action is conditioned by the validity of its predicate. To evaluate
an action, the interpreter (more precisely, the language kernel) first evaluates its predicate.
If it is false, the action is discarded; otherwise, if it is true, the kernel proceeds to execute
the action: it evaluates the extra argument (if any) and tries to execute the specified
operation with the given operands. When writing actions, we often omit the predicate,
question mark, and parentheses when the predicate is tautological (always true). Thus (i)
an action of the form x, read “start x”, when executed, puts x in state occurring; (ii) an
action of the form x, read “pause x”, puts x in state paused; (iii) an action of the form x,
read “stop x”, puts x in state stopped; (iv) an action of the form x : e, read “seek x
by e”, advances the playback time of x by the number to which expression e evaluates;
and (v) an action of the form x.u : e, read “set x.u to e”, stores into property u of x the
value to which expression e evaluates.

A Smix program consists of two parts: a set of media object declarations and a
sequence of links. A media object declaration associates an object identifier with a
property initialization table. A link is a synchrony relation of the form a→ a1a2 . . . an,
which establishes that whenever some action with target a is executed, actions a1, a2, . . . ,
an shall also be executed, in this order. The action target a on the left-hand side of
symbol → is called the head of the link, and the action sequence a1a2 . . . an on its
right-hand side is called the tail of the link.

Example. To make matters concrete, consider the following Smix program:

λ→ x

x→ y z

y→ z

x→ λ

This program has four links which operate on four media objects: the ordinary objects x,
y, and z, and the implicit object lambda (λ) which stands for the program itself. The
first link establishes that when the program starts, media object x shall be started; the
second link establishes that whenever x starts, object y shall be started and object z shall
be stopped; the third link establishes that whenever y starts, object z shall be started; and
the fourth link establishes that when x stops the whole program shall be stopped.

The equational and linear semantics discussed in Sections 3 and 4 and are only
concerned with the description of a single program reaction (input-output cycle). Given
some input action a received from the environment, they determine how the execution
of action a affects the kernel memory (state, time and properties of media objects) and
the actions a1, a2, . . . , an that are to be triggered internally in response to a, and emitted
back to the environment at the end of the reaction.

3 The equational semantics

Smix has the following syntactic sets: integers n ∈ N; truth values t ∈ T = {>,⊥}; media
object identifiers x, y, z ∈ Media; property identifiers u, v ∈ Prop; expressions e ∈ Expr;
predicates p ∈ Pred; action atoms a ∈ ActAtom; action sequences α ∈ ActSeq; and link
sequences (or programs) L, P ∈ LinkSeq. Its abstract syntax is defined as follows:

e ∈ ExprF n | state(x) | time(x) | prop(x, u) | e1 + e2 | e1 − e2 | e1 × e2 | e1 ÷ e2

p ∈ PredF > | ⊥ | e1 = e2 | e1 < e2 | e1 > e2 | ¬p1 | p1 ∨ p2 | p1 ∧ p2

a ∈ ActAtomF (p ? x) | (p ? x) | (p ? x) | (p ? x:e) | (p ? x.u:e)
α ∈ ActSeqF ε | aα1

L ∈ LinkSeqF ε | x→ αL1 | x→ αL1 | x→ αL1 | x→ αL1 | x.u→ αL1

The program state is represented by a media memory, i.e., a total function θ that
maps a media object identifier x to a memory cell 〈s, n, ρ〉, where s ∈ { , , } is the
object state, n ∈ N is its time, and ρ : Prop → N is a total function that represents its
property table. We writeM for the set of all media memories, φ for the empty memory
cell 〈 , 0, ρ0〉, where ρ0 is the table in which all properties have value 0, and Φ for the
empty memory, i.e., the one in which all cells are empty.

Memory cells can be read and written. Given a memory θ and a media object x, we
write θ(x) for the cell of x in θ and θ[x B X] for the memory obtained by replacing θ(x)
by X. We write θs(x), θt(x), θρ(x, u) for the state, time, and value of property u of x
in θ, and θs[x B s] for the memory obtained by replacing θs(x) by s, θt[x += n] for the
memory obtained by incrementing θt(x) by n, and θρ[x.u B n] for the memory obtained
by replacing θρ(x, u) by n.

Finally, to access the links of a program, we define the link function ` that receives
as arguments the program P and an action atom a, and returns the action sequence α
associated with the execution of a in P (τ(a) denotes the target of action a):

`(ε, a) = ε

`(a′ → αL, a) =

α`(L, a) if τ(a) = a′

`(L, a) otherwise .

Evaluation of equational programs. The evaluation of action sequences is determined
by the relation ⇒ such that 〈α, P, θ〉 ⇒ θ′ iff action sequence α when executed over
program P in memory θ evaluates to the updated memory θ′. Since program P remains
fixed throughout the evaluation, we use the notation 〈α, θ〉 ⇒ θ′, with references to an

implicit program P made when necessary. The relation⇒ is defined inductively in terms
of the link function and the relations for evaluation of expressions and predicates (whose
definition we deliberately omit) by the following eleven rules.

〈ε, θ〉 ⇒ θ (Rε)

〈state(x) , ∧ p, θ〉 ⇒ > 〈`(P, x)α, θs[x B]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) = ∧ p, θ〉 ⇒ > 〈`(P, x)α, θs[x B]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) = ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈`(P, x)α, θ[x B φ]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈`(P, x)α, θt[x += n]〉 ⇒ θ′

〈(p ? x:e)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x:e)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈`(P, x.u)α, θρ[x.u B n]〉 ⇒ θ′

〈(p ? x.u:e)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x.u:e)α, θ〉 ⇒ θ′
(R−)

By rule Rε the empty sequence ε does nothing and leaves the memory unchanged.
By rule R+, if the first action of the sequence is (p ? x) and if it can be executed in

state θ, i.e., if object x is in state paused or stopped and predicate p evaluates to true in θ,
the configuration evaluates to the result of evaluating sequence `(P, x)α in θs[x B];
otherwise, by rule R−, the configuration evaluates to the result of evaluating α in θ.

Rules R+, R−, and R− operate similarly. If the first action of the sequence can be
executed, x transitions to the corresponding state and the links that depend on the action
target are triggered; otherwise, the action is dropped and the next action of the sequence
is considered. Rule R+ is also similar, but besides transitioning x to state stopped, it
replaces the cell of x in θ by the empty cell φ, which resets x’s state, time, and properties.

By rule R+, if the first action of the sequence is (p ? x:e) and if it can be executed
in θ, x’s playback time is incremented by the number to which expression e evaluates
in θ, and the links of program P that depend on target x are triggered; otherwise, by
rule R−, action (p ? x:e) is dropped and the next action of the sequence is considered.
By definition of memory writes, the playback time of x is reset to 0 if θt(x) + n < 0; thus
the resulting playback time is always a nonnegative integer.

By rule R+, if the first action of the sequence is (p ? x.u:e) and if it can be executed,
property u of x is set to the number to which expression e evaluates in θ, and the
links of program P that depend on target x.u are triggered; otherwise, by rule R−,
action (p ? x.u:e) is dropped and the next action of the sequence is considered.

Determinism and non-termination. Theorem 1 establishes that the evaluation of
action sequences is deterministic. The proof follows by induction on the structure of
derivations.

Theorem 1 (Determinism). For all α ∈ ActSeq, θ, θ1, θ2 ∈ M, if 〈α, θ〉 ⇒ θ1
and 〈α, θ〉 ⇒ θ2 then θ1 = θ2.

Theorem 2 establishes that the evaluation of action x in the empty memory Φ
with P = x → x x does not converge. The proof follows by contradiction on the
assumption of minimality of a hypothetical derivation of 〈(> ? x), P, Φ〉 ⇒ θ.

Theorem 2. Let P = x → (> ? x)(> ? x). Then there is no θ ∈ M such that
〈(> ? x), P, Φ〉 ⇒ θ.

The above theorem implies that, under the equational semantics, the computation of
reactions may not terminate in a finite number of steps, which violates the synchronous
hypothesis. Similar problems occur in related languages, e.g., the problem of cyclic
dependencies in SMIL’s timegraph [16] (the structure used by the SMIL interpreter to
control the presentation), or that of causality cycles in Esterel [2]. Here the problem is
caused by infinite feedback loops in link evaluation: a link (or group of links) triggers
its reevaluation endlessly. A common approach to tackle such tight loops is to impose
a restriction that breaks them. For example, we could establish an upper bound to
the number of times the same link or action can execute during a reaction. Though
such restrictions are reasonable, we follow a more flexible path. Instead of adopting a
particular a priori restriction, we introduce a linear format for programs in which links
and action sequences are replaced by equivalent linear programs that always terminate.

4 The linear semantics

The abstract syntax of linear programs is mostly identical to that of equational programs
presented in Section 3. The only difference is the substitution of sets ActSeq and LinkSeq
by the set ActLine of linear programs defined as follows:

α ∈ ActLineF ε | a[α1]α2

Here metavariable α is assumed to range over ActLine. Though the same metavariable
is used to denote action sequences (members of ActSeq), care is taken not to mix the
uses so that the correct denotation can always be inferred from the context.

The linearization procedure σ we adopt takes as input an equational program P and
an action a and outputs a linear program α that represents the evaluation of a in P. The
procedure σ is defined in terms of the graph of program P, which is built by interpreting
its links as an adjacency list. For instance, Figure 1 depicts a Smix program and its
corresponding graph. A loop in the graph indicates the possibility of a tight loop during
reaction evaluation, but it does not guarantee that it will occur—its occurrence depends
on the contents of the evaluation stack and media memory, both of which cannot be
known statically.

x y

xy

0, (> ? y)

1, (> ? x)

2, (> ? y)

3, (> ? x)

x→ y

y→ x

x→ y

y→ x

Fig. 1. A Smix program and its corresponding graph.

Given some program P and action a, procedure σ starts at the node representing the
target of action a and proceeds in depth-first fashion traversing (marking) each reachable
arc at most once. Its result is the linear program that implements the execution a in P.
The procedure’s running time is bounded to the number of arcs reachable from its point
of departure; its time complexity is thus O(n) where n is size of program P.

By applying σ to the program of Figure 1 with an input action (> ? x), we get
the linear program x[y[x[y]]]. This program encodes the dependencies between
actions on the original equational program. To evaluate it, the kernel reads its leftmost
action, x, and tries to execute it. If it succeeds, in this case, if x can transition to state
occurring in θ, it proceeds to evaluate the subprogram that depends on x, namely, the
subprogram immediately following it in square brackets, y[x[y]]. Otherwise, it skips
the brackets altogether and proceeds to evaluate the next subprogram, ε in this case. The
kernel continues until there are no actions left to be executed.

Evaluation of linear programs. The evaluation of linear programs is given by the
relation ⇒ such that 〈α, θ〉 ⇒ θ′ iff linear program α when executed in memory θ
evaluates to an updated memory θ′. Relation⇒ is defined inductively in terms of the
relations for evaluation of expressions and predicates by the following rules. (Here we
show only the rules for the evaluation of programs whose first action is a start action;
the rules for the remaining actions and for the empty program are similar—they are
analogous to their counterparts in the equational semantics.)

〈state(x) , ∧ p, θ〉 ⇒ > 〈α1α2, θs[x B]〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R−)

Determinism and termination. Theorem 3 establishes that the evaluation of linear
programs is deterministic. The proof follows by induction on the structure of derivations.

Theorem 3 (Determinism). For all α ∈ ActLine, θ, θ1, θ2 ∈ M, if 〈α, θ〉 ⇒ θ1
and 〈α, θ〉 ⇒ θ2 then θ1 = θ2.

Theorem 4 establishes that the evaluation of linear programs always terminates. Its
proof follows by induction on the structure of programs and depends on a lemma that
establishes that 〈α1α2, θ〉 ⇒ θ′′ iff 〈α1, θ〉 ⇒ θ′ and 〈α2, θ

′〉 ⇒ θ′′, for some θ′.

Theorem 4 (Termination). For all α ∈ ActLine and θ ∈ M, there is a θ′ ∈ M such
that 〈α, θ〉 ⇒ θ′.

A consequence of Theorem 4 is the Turing-incompleteness of the computational
model of linear Smix programs. One requirement for Turing-completeness is the ability
to express indefinite iteration, but Theorem 4 restricts this ability, so the resulting model
is not Turing-complete. This means that there are computable functions which cannot be
expressed by linear Smix programs. That said, Smix’s model is intentionally restricted:
it aims to ease the description of interactive multimedia presentations, as opposed to
the description of general algorithms. Moreover, if general computing functions are
required, one can resort to external scripts, which can be embedded in the program as
media objects containing Lua code.

Finally, note that the evaluation relation for linear programs determines a natural
equivalence relation on ActLine: programs α1 and α2 are equivalent, in symbols α1 ∼ α2,
iff they evaluate to the same final memory θ′ when fed with the same initial memory θ.
This definition of equivalence gives rise to program reduction techniques which can be
used to optimize programs. Equivalence results and the detailed proofs of the previous
theorems can be found in [10].

5 Coroutine interpretation

The original implementation of Smix [10] has two parts: the language kernel, which
is simply a realization of the linear semantics, and the multimedia engine, which take
kernel’s commands and renders the corresponding multimedia presentation. These parts
are kept in isolated modules that communicate asynchronously by exchanging messages
(actions). Though this design works reasonably well, an even simpler implementation is
possible: we can convert (or interpret) the Smix program into a Lua script that uses the
multimedia engine’s synchronous API plus Lua coroutines to realize the program logic.
We now describe this alternative implementation in detail.

Smix’s multimedia engine code consists of a single C library, called LibPlay4, which
is built on top of GStreamer [6], a free/open-source framework for multimedia. The
Lua binding of LibPlay is called LuaPlay, and has two main concepts: scene and media.
A scene represents an OS-level window with audio and video output. And a media
represents a media object, which is analogous to a Smix media object. The scene API
consists of the following functions: (i) new, which creates it, (ii) get and set which
manipulate its properties, (iii) receive which blocks awaiting for a given event, and
(iv) quit which quits the scene. Similarly, the media API consists of the functions (i) new
which creates a media in a given scene, (ii) get and set which manipulates the media
properties, and (iii) start, pause, stop and seek which manipulates the media state and
playback time.

The scene and media APIs we are considering here are synchronous: all its calls
are immediately effectuated and, with exception of scene’s receive call, execute in no
(logical) time. The only call that actually “consumes” time is receive; in fact, it is only
during this call that the engine produces audiovisual samples, and it does this until an
event that matches the mask passed to receive is generated. Currently, LuaPlay API
supports three types of events: clock ticks, user interactions (keyboard and mouse) and
media object state changes.

4 https://github.com/TeleMidia/LibPlay

https://github.com/TeleMidia/LibPlay

Using the previous API, we can easily construct simple applications that wait for
a single event before doing something. But as soon as we need to wait for more than
one event things get complicated. There are basically two approaches to deal with the
problem of awaiting on multiple events (conditions). The traditional solution is to use
callbacks—we could call receive in a loop, passing each received event to the registered
callbacks. The problem with this solution is that the program logic is “lost” in the
callbacks. The alternative solution, and the one we adopt here, is to implement a parallel
operation that creates new program trails dynamically. Under this approach, to wait for
two events we simply create two trails and block them on the corresponding events.

In LuaPlay, this parallel operator is the scene function par: it creates a trail for each
function received as argument and terminates the parallel composition as soon as one of
them ends. In practice, we use Lua coroutines to implement the parallel composition. The
par call creates a coroutine to represent the parallel composition of the given functions.
It wraps each function into a coroutine itself and then execute these child coroutines,
one at a time. If all of them yield awaiting on some condition, the composition itself
yields awaiting on the combined condition. Otherwise, if one of them terminates, the
composition terminates, which causes the termination of its child trails. (If par calls are
nested, only the topmost call calls the real “await”, i.e., the scene’s receive function.)

Using LuaPlay’s parallel operator par and an await operator, which is simply the
coroutine yield call, we can easily implement Smix programs: the program itself is a
single par call and each of its links is a trail that waits in a loop for the link condition (its
head) and executes the corresponding linear program whenever it is awaken. Figure 2
presents the LuaPlay program that implements the example Smix program discussed
at the end of Section 2. Finally, note that using this technique we can either compile
Smix programs into LuaPlay programs or interpret them directly, i.e., we can write an
eval function which takes a Smix program, builds and returns a function that is the
corresponding LuaPlay program (the main trail of the par call).

1 scene:par {
2 function ()
3 while true do
4 await {type=’start’, media=λ}
5 exec (σ(P, λ))
6 end end,
7 function ()
8 while true do
9 await {type=’start’, media=x}

10 exec (σ(P, x))
11 end end,

12 function ()
13 while true do
14 await {type=’start’, media=y}
15 exec (σ(P, y))
16 end end,
17 function ()
18 while true do
19 await {type=’stop’, media=x}
20 exec (σ(P, x))
21 end end
22 }

Fig. 2. Coroutine version of the example Smix program discussed at the end of Section 2.

6 Conclusion

In this paper, we presented the Smix language, discussed two versions its synchronous
semantics, equational and linear, and proposed a novel, straightforward implementation
of its linear semantics using Lua coroutines. Though we discussed most Smix features,
some of them (pinned actions, limited iteration, and asynchronous actions) were de-
liberately omitted. These omissions, however, do not affect the formalisms and results
discussed in Sections 3 and 4, nor the coroutine implementation discussed in Section 5.

We are currently investigating a continuation semantics for the coroutine interpreta-
tion of Smix programs discussed in Section 5. Our goal, in this case, is not only to relate
both semantics (Smix and continuations) but also to use the continuation semantics as
a basis for developing an imperative (Esterel-like) synchronous multimedia language
(whose engine is LuaPlay). Besides the continuation semantics, we are also investigating
approaches for verifying the behavior of Smix programs “in time”, i.e., for reasoning
about a sequence of chained program reactions, each describing an instant. We intend
to use for this purpose Petri-PDL [11], an extension of dynamic propositional logic for
Petri nets, which would allow us to model the behavior of both the language kernel and
the multimedia engine, and to do so stochastically.

References

1. ABNT NBR 15606-2: Digital Terrestrial TV — Data Coding and Transmission Specification
for Digital Broadcasting — Part 2: Ginga-NCL for Fixed and Mobile Receivers: XML
Application Language for Application Coding. ABNT, São Paulo, SP, Brazil (2007)

2. Berry, G.: The constructive semantics of pure Esterel: Draft version 3. Tech. rep., INRIA,
Sophia-Antipolis, France (2002)

3. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: Design, seman-
tics, implementation. Science of Computer Programming 19(2) (1992)

4. Gaggi, O., Bossi, A.: Analysis and verification of SMIL documents. Multimedia Systems
17(6) (2011)

5. Gamatié, A.: Designing Embedded Systems with the SIGNAL Programming Language.
Springer New York, New York, NY, USA (2010)

6. GStreamer Developers: GStreamer: Open source multimedia framework. http://
gstreamer.freedesktop.org, accessed November 9, 2016

7. Ierusalimschy, R.: Programming in Lua. Lua.org, 3rd edn. (2013)
8. ITU-T Recommendation H.761: Nested Context Language (NCL) and Ginga-NCL. ITU

Telecommunication Standardization Sector, Geneva, Switzerland (November 2014)
9. Kahn, G.: Natural semantics. In: STACS 87: 4th Annual Symposium on Theoretical Aspects

of Computer Science, 1987 Proceedings, LNCS, vol. 247 (1987)
10. Lima, G.F.: A synchronous virtual machine for multimedia presentations. Ph.D. thesis, De-

partment of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil (2015)
11. Lopes, B.: Extending Propositional Dynamic Logic for Petri Nets. Ph.D. thesis, Department

of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil (2014)
12. Picinin, D., Farines, J.M., Koliver, C.: An approach to verify live NCL applications. In:

Proceedings of the 18th WebMedia, São Paulo, SP, Brazil, 15–18 October, 2012. ACM (2012)
13. Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. 19, Computer

Science Departement, Aarhus University, Aarhus, Denmark (1981)
14. dos Santos, J.: Multimedia Document Validation Along its Life Cycle. Ph.D. thesis, Computing

Institute, UFF, Niterói, RJ, Brazil (2016)
15. dos Santos, J., Braga, C., Muchaluat-Saade, D.C.: A rewriting logic semantics for NCL.

Science of Computer Programming 107–108 (2015)
16. W3C: Synchronized multimedia integration language (SMIL 3.0). Recommendation, World

Wide Web Consortium (December 2008)
17. W3C: HTML5: A vocabulary and associated APIs for HTML and XHTML. Recommendation,

World Wide Web Consortium (October 2014)

http://gstreamer.freedesktop.org
http://gstreamer.freedesktop.org

	The Smix synchronous multimedia language: Operational semantics and coroutine implementation

