
Converting NCL Documents to Smix and Fixing Their Semantics
and Interpretation in the Process

Guilherme F. Lima
glima@inf.puc-rio.br

PUC-Rio, Rio de Janeiro, Brazil

Roberto Gerson de Albuquerque Azevedo
razevedo@inf.puc-rio.br

PUC-Rio, Rio de Janeiro, Brazil

Sérgio Colcher
colcher@inf.puc-rio.br

PUC-Rio, Rio de Janeiro, Brazil

Edward Hermann Haeusler
hermann@inf.puc-rio.br

PUC-Rio, Rio de Janeiro, Brazil

ABSTRACT
In this paper, we present the conversion of NCL to Smix and dis-
cuss its main implications. NCL is a declarative language for the
speci�cation of interactive multimedia presentations which was
adopted by the ITU-T H.761 recommendation for interoperable
IPTV services. Smix is a synchronous domain-speci�c language
with a similar purpose, but with a simpler and more precise seman-
tics. By implementing NCL over Smix, we bring to the former the
notions of reaction and execution instants, and with them some
bene�ts. From a practical perspective, we �x the semantics of the
converted documents, get a leaner NCL player (the Smix inter-
preter), and simplify further conversions. From a systems-design
perspective, the structured conversion of NCL to Smix helps us tame
the complexity of mapping the user-oriented constructs of NCL
into the machine-oriented primitives that realize them as a multi-
media presentation. In the paper, we present NCL and Smix, discuss
related work on document conversion, and detail the conversion
process and a prototype implementation.

CCS CONCEPTS
• Applied computing → Format and notation; • Information
systems → Multimedia content creation;

GENERAL TERMS
Languages; design; theory

KEYWORDS
Document conversion; multimedia; synchronous language; NCL;
Smix; DietNCL
ACM Reference format:
Guilherme F. Lima, Roberto Gerson de Albuquerque Azevedo, Sérgio Colcher,
and Edward Hermann Haeusler. 2017. Converting NCL Documents to Smix
and Fixing Their Semantics and Interpretation in the Process. In Proceedings
of WebMedia’17, October 17–20, 2017, Gramado, RS, Brazil., , 8 pages.
DOI: https://doi.org/10.1145/3126858.3126876

1 INTRODUCTION
In this paper, we describe the conversion of NCL documents to
Smix programs and discuss how this process, at the same time, �xes

WebMedia’17, October 17–20, 2017, Gramado, RS, Brazil.
© 2017 ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in Proceed-
ings of WebMedia’17, , http://dx.doi.org/https://doi.org/10.1145/3126858.3126876.

the semantics of the converted documents and serves as a basis for
their structured interpretation. NCL (Nested Context Language) is
a declarative language for the description of interactive multimedia
presentations. NCL version 3.0 is both the standard language for
interactive applications in the Brazilian digital terrestrial TV sys-
tem [1] and an ITU-T recommendation [13] for IPTV systems. Smix
(Synchronous mixer) is a synchronous domain-speci�c language
for the construction of interactive multimedia applications [18].
By calling Smix a synchronous language, we mean that its pro-
grams operate under the synchronous hypothesis [2, 3], i.e., that
they behave as event-driven systems whose reactions to external
events occur in discrete, instantaneous computational steps. There
are practical and methodological advantages in implementing NCL
over Smix.

From a practical perspective, the NCL-Smix conversion is advan-
tageous for at least three reasons. First, the output programs inherit
the properties of the Smix semantics: its synchronous operation, de-
terminism, and guaranteed reaction-termination [18]. The intuitive
event propagation model of NCL (depending on how the NCL speci-
�cation is interpreted) is subject to dysynchrony, non-determinism,
and in�nite feedback-loops. The conversion rules proposed here
attach meaning (derived from Smix) to the NCL constructs they are
converting from, making their behavior unambiguous and �xing the
intuitive event propagation model of NCL. Second, we get a novel
and leaner NCL player, viz., the Smix interpreter, which realizes the
intended semantics. And third, the conversion to Smix simpli�es
further conversions and enables direct interpretations. For instance,
Smix programs can be directly interpreted as Lua coroutines [19],
whose syntax and model of operation bear no resemblance to NCL.

From a methodological, systems-design perspective, the con-
version from NCL to Smix is advantageous because it provides
a structured approach to tackle the problem of transforming the
high-level description of media objects and their temporal rela-
tionships, which comprises the NCL document, into the low-level
digital signal-processing primitives and operations that produces
the corresponding multimedia presentation. Such a structured, hi-
erarchical decomposition of abstractions (in this case, languages) is
a recurrent theme in computing-systems design in general, but not
so common in the context of multimedia languages, whose speci-
�cations and implementations tend to be monolithic. (We discuss
exceptions in Section 2.)

http://dx.doi.org/https://doi.org/10.1145/3126858.3126876

To implement NCL over Smix, we adopted the following series
of conversion steps:

NCL
1
→ Raw NCL

2
→ µNCL

3
→ Plain Smix

4
→ Smix

5
→ DSP Data�ow.

In step (1), we convert the input NCL document to a restricted
but compatible format, called Raw NCL. In step (2), we reduce the
Raw NCL document even further, converting it to a minimalist
format, called Micro NCL (µNCL). In step (3), we convert the µNCL
document to Plain Smix, which is a syntactically richer dialect of
Smix. And in step (4), we macro-expand the Plain Smix program
into the �nal Smix program. Each step in the series transforms a
representation that is closer to humans into one that is closer to the
machine. The last step in the series, step (5), stands for the actual
interpretation of the output Smix program, which is translated at
run-time by the Smix interpreter into a multimedia digital-signal
processing data�ow (viz., a GStreamer pipeline [9]).

In this paper, we are mainly concerned with the step (3) of the
above series and with the implications of the NCL-Smix conversion
process as a whole. In Section 2, we discuss some related work
on multimedia document conversion. In Section 3, we present the
NCL and Smix languages, and the dialects µNCL and Plain Smix.
In Section 4, we detail the conversion from µNCL to Plain Smix.
In Section 5, we discuss the implications of the conversion from a
semantical point of view. In Section 6, we detail the implementation
of a prototype converter. And in Section 7, we draw our conclusions
and point out future work.

2 RELATEDWORK
The idea of a multi-layered multimedia framework with higher level
languages targeting document authors and lower level languages
targeting player implementors is not new. The architecture of the
Extensible MPEG-4 Textual Format (XMT) [16, 22] framework, for
instance, consists of two such layers (or languages), viz., XMT-A
and XMT-O. The XMT-A language is an XML representation of the
MPEG-4 Binary Format for Scenes (BIFS) [12], which is a low-level
multimedia scene description format. The XMT-O language is based
on SMIL [4] and o�ers a higher level representation of MPEG-4
features. To be presented, XMT-O documents are �rst translated to
equivalent XMT-A documents, which are then translated to MPEG-
4 BIFS or directly interpreted by the document formatter. There are
proposals for the direct conversion of subsets of SMIL to subsets of
MPEG-4 BIFS [24] and vice versa [14].

Recently, with the popularization of HTML5 [10], there has been
a surge in proposals that use it as a target language. Many of these
implement novel document formats or re-implement old formats by
converting them statically or dynamically to HTML5, which ends
up playing the role of a lower level representation format. The jus-
ti�cation of such proposals is usually grounded on interoperability
with the Web ecosystem. They are less concerned with an e�cient
simulation of the input documents, or with the conscious use of
HTML5 as an intermediate step in their structured interpretation
(which are both goals of our NCL-Smix conversion proposal).

As examples of works that propose the dynamic conversion of
parts of SMIL and NCL to HTML5, we can cite TimeSheets.js [5]
and WebNCL [21]. And as examples of works that do it statically,

we can cite Kim et al. [15], for the conversion of MPEG-4 XMT to
HTML5, and NCL4WEB [25], for the conversion of NCL to HTML5.

There are also works on the conversion of NCL and SMIL docu-
ments to formal models with the purpose of validating them. As
examples of these we can cite Picinin et al. [23] and dos Santos et
al. [7] for NCL, and Chung et al. [6] and Gaggi et al. [8] for SMIL. For
obvious reasons, these works devote special attention to document
behavior. Although we are also interested in formalizing document
behavior, we do so by converting the input document to a model
that is closer to it, and to one that �xes known problems of the
intuitive semantics of NCL, as we discuss in Section 5. Finally, our
proposal is especially concerned with real-time performance—the
previous works on NCL validation use complex simulation models,
whose real-time evaluation is impractical.

3 NCL AND SMIX
In this section, we present the NCL and Smix languages, and detail
the dialects µNCL (⊂NCL) and Plain Smix (⊃ Smix) which are, in
e�ect, the source and target languages of the conversion process
we describe in Section 4. The conversion process itself is de�ned
inductively on the syntax of the input documents, which means that
it transforms, inductively, XML strings (⊃ µNCL documents) into
Lua tables (⊃ Plain Smix programs). As it would be cumbersome to
use XML and Lua in the description of the conversion process, we
introduce abstract versions of the concrete syntaxes of µNCL and
Plain Smix. We use these abstract versions with the tacit assumption
that given the appropriate parameters every abstract document or
program can be easily instantiated in the concrete syntax.

3.1 (Micro) NCL
A Micro NCL (µNCL) document is an NCL document containing
only contexts, media objects, anchors, properties, and links, and
in which links are in a restricted, basic format. More precisely, a
µNCL document is an NCL 3.0 Raw Pro�le [26] document whose
link-connector pairs are in the �rst normal form (NF1) [20].

The NCL 3.0 Raw Pro�le (or Raw NCL) is a trimmed-down ver-
sion of the full NCL [1] (EDTV Pro�le) which preserves the expres-
siveness of the full version and is at the same time compatible with
it. As a result, every Raw NCL document is by de�nition a valid
(full) NCL document, and for each such NCL document there is a
Raw NCL document that produces the same presentation.

In NCL, either Raw or full, link speci�cation consists of two
parts: the connector, which is a template for the link, and the link
itself, which is an instantiation of the connector. The �rst normal
form (NF1) theorem for link-connector pairs in NCL [20] is an
analytical result that establishes that for any NCL document D
there is an equivalent document D ′ such that (i) each connector
element in D ′ is referenced by exactly one link element, and (ii)
all link-connector pairs of D ′ contain exactly one condition and at
most two (sequential) actions.

By adopting the Raw pro�le plus NF1 in the de�nition of µNCL,
we reduce considerably the complexity of the conversion to Smix,
and we do it in a structured way: the preprocessing step now con-
sists in converting the input NCL document to a Raw NCL document
and, subsequently, in putting this Raw NCL document in NF1. The
resulting µNCL document is then fed to the next step.

µNCL syntax and intuitive semantics. We now turn to the de�ni-
tion of µNCL. Its abstract syntax is given by the following grammar:

U F contextx SML end
S F ε | portx S1

M F ε | mediax M1 | U M1

L F ε | C, P do A L1 | C, P do A1,A2 L1

C F onBeginx | onPausex | onResumex | onEndx
| onAbortx | onSelectx | onSetx .u

AF startx | pausex | resumex | stopx | abortx
| selectx | setx .u B e

A µNCL document is a string of the form contextx SML end,
where x is an identi�er, S are zero or more ports, M are zero or more
components (i.e., media objects or nested contexts), and L are zero
or more links. Each portx establishes that component x shall be
started when the port’s parent context is started. And each link of
the formC, P do A orC, P do A1,A2 establishes that whenever the
event waited by conditionC occurs and, simultaneously, predicate P
evaluates to true, the events denoted by the actions A1, . . . , An are
to be generated one after another.

A µNCL predicate P (assessment statement in NCL terminology)
is a propositional logic formula involving the state or property
values of media objects. As µNCL predicates are almost identical
to Smix predicates, we will neither detail their structure nor their
mapping to Smix. For the same reason, we will omit the internal
structure of media object declarations (mediax) and the mapping
of NCL properties into Smix properties. It su�ces to say that me-
dia objects denote presentation atoms (texts, images, audio clips,
video clips, etc.) and that their properties de�ne the audiovisual
characteristics of their presentation (e.g., property “transparency”
determines the transparency applied to the visual samples of an
object with visual representation). Besides properties, media objects
may have anchors, which represent segments of object’s content.
We will defer the description of media-object anchors and their
translation to Smix to Section 4.2.

In µNCL, as in full NCL, every media object has a presentation
event (or interval) which may be in one of three possible states:
“occurring”, “paused”, or “stopped” (the initial state). If the object’s
presentation event is in state occurring, then its content is being
presented; if it is in state paused, its content is paused; and if it is in
state stopped, the content is not being presented and the object’s
properties assume their initial values. The transitions between these
presentation-event states are commanded by actions and trigger
corresponding conditions. Table 1 shows the mappings between
actions, presentation-event transitions, and triggered conditions.

Table 1: NCL presentation-event transitions.

Action State transition Condition triggered

startx stopped→occurring onBeginx
pausex occurring→paused onPausex
resumex paused→occurring onResumex
stopx occurring/paused→stopped onEndx
abortx occurring/paused→stopped onAbortx

In addition to the presentation event, each media object de�nes
a selection event and, for each of its properties, an attribution event.
The former represents the selection of the object by the user (via key
presses or pointer clicks) and the latter represents the attribution
of a value to an object property. In full NCL, the selection and
attribution events are analogous to the presentation event: both
de�ne three states and �ve associated action-condition pairs. For
simplicity, and without loss of generality, in the abstract syntax
of µNCL we will assume a single action-condition pair for each
of these events, which behave as follows: action selectx triggers
condition onSelectx , and action setx .u B e sets the property u
of x to the value of expression e and triggers condition onSetx .u.

Some µNCL actions can be thought as being generated implicitly
by the environment (the NCL player). There are three cases in
which such implicit actions are generated:

(1) When the document starts, an action startx is generated
to its utmost context x . And when a context x starts it
generates an action starty to each of its immediate child
components y such that there is a port of the form porty
in its port list. Thus, when a context starts, all components
mapped by its ports are started.

(2) When media object x is selected by the user, an action
selectx is generated. (Contexts cannot be selected.)

(3) After the content of media object x is exhausted, an ac-
tion stopx is generated. And when the last child compo-
nent of context x is stopped, an action stopx is generated.

The document presentation terminates when the presentation
event of its utmost context transitions to stopped, i.e., when all
media objects and contexts that comprise the document are stopped.

Example. Consider the following µNCL document.

contextx
portx1 mediax1 mediax2 mediax3
onBeginx1,> do startx2, startx3
onEndx2,> do pausex1
onSelectx3,> do setx3.transparency B .5, resumex1

end

The above document consists of a context x containing a port,
three media objects, and three links. The port establishes that when
the document (context x) starts, media object x1 shall be started. In
the links, symbol> denotes a predicate that is always true. Thus the
�rst link establishes that whenever media object x1 starts, objects x2
and x3 shall be started. The second link establishes that whenever
media object x2 stops, object x1 shall be paused. Finally, the third
link establishes that whenever media object x3 is selected by the
user, object x3 shall have its transparency set to 50% and object x1
shall be resumed.

Assuming that x1, x2, and x3 are video objects, when the above
document is started the three videos will be started: x1 due to the
port, and x2 and x3 due to the �rst link. The three videos will be
reproduced until x2 ends, i.e., its presentation event transitions from
state occurring to state stopped. At this moment, the second link
is activated and x1 is paused (if it is not already stopped). Finally,
during the whole presentation, if the user selects x3 while x3 is
being presented, the third link is activated, x3’s transparency is set
to the half of its natural value, and x1 is resumed (if it was paused).

3.2 (Plain) Smix
A Smix program consists of a set of media object declarations to-
gether with a sequence of links. A media object is a presentation
atom; it has a content, a state, a (playback) time, and a property
table. The content is a sequence of audiovisual samples. The state
is either “occurring”, “paused”, or “stopped”. (In Smix, the states
are associated with the media object as a whole, and not with its
events as in NCL.) The object time is the number of clock ticks
to which the object was exposed while in state occurring. And its
property table is an associative array that maintains the value of
its properties, which are analogous to NCL properties.

Smix media objects are manipulated by actions which are triples
of the form

(predicate ? target : argument),

where the predicate is a propositional logic formula involving the
state, time, or property values of media objects, the target speci�es
the operation—start (), pause (), stop (), seek (), or set ()—and
main operand (media object or property) of the action, and the
argument is an extra operand required by seek and set actions.

The execution of actions is conditioned by the validity of their
predicates. Thus, to evaluate an action, the Smix interpreter �rst
evaluates its predicate. If the predicate is false, the action is dis-
carded; if it is true, the interpreter proceeds to execute the action: it
evaluates the extra argument (if any) and tries to execute the speci-
�ed operation with the given operands. When writing actions, we
often omit the predicate, question mark, and parentheses when the
predicate is tautological (always true). Table 2 shows some example
Smix actions and their intended readings.

Table 2: Smix actions and their intended readings.

(> ? x)
≈ start x unconditionally (abbreviated as x)

(⊥ ? x)
≈ skip (do nothing, as ⊥ is always false)

(state(y) = ? x)
≈ pause x if y occurring

(time(x) ≥ 1 ∧ time(x) ≤ 5 ? x)
≈ stop x if its time is between 1 and 5 ticks

(prop(x ,u) = 0 ∨ ¬(time(x) > 1) ? x : 10)
≈ seek x by 10 ticks if x .u is 0 or if x ’s time ≤ 1 tick

(time(x) = time(y) ? x .u: time(x) ÷ 2)
≈ set x .u to the half of x ’s time if this is equal y’s time

A Smix link is a synchrony relation of the form

a → a1a2 . . . an ,

which establishes that whenever some action with target a is ex-
ecuted, actions a1, a2, . . . , an shall also be executed, in this order.
Notice that on the left-hand side of the symbol→we have an action
target a (not a complete action), while on its right-hand side we
have a nonempty sequence of complete actions (each consisting of
predicate plus target plus argument).

Example. Consider the following Smix program.

λ→ x

x → y z

y → z

x → λ

This program is written in the abstract syntax of Smix, in which
a program is represented by sequence of links and media object
declarations are omitted. The above program has four links that op-
erate on four media objects: the ordinary objects x ,y, and z, and the
implicit object lambda (λ) which stands for the program itself. The
�rst link establishes that when the program starts, media object x
shall be started. The second link establishes that whenever x starts,
objecty shall be started and object z shall be stopped. The third link
establishes that whenever y starts, object z shall be started. And
the fourth link establishes that when x stops the whole program
shall be stopped.

To start the above program the interpreter generates an action λ
(the bootstrap action), which activates the �rst link. This causes
the interpreter to execute action x , which starts media object x
and activates the second link. This, in turn, causes the interpreter
to execute two actions: (i) y, which starts y and triggers the third
link (which starts z), and (ii) z, which stops object z which has
just been started. Thus, after the bootstrap action λ, the sequence
of actions x y z z is executed by the Smix interpreter and this
leaves the program in a state where media objects λ, x , and y are
occurring and object z is stopped. We call the whole process of
propagating an action through the program links (and reaching a
�nal state) a reaction.

Smix reactions have some interesting properties. First, they op-
erate under the synchronous hypothesis, i.e., logical time does not
pass while actions are being executed and propagated through links.
(Clock ticks correspond to “seek by 1” actions generated periodically
by the environment.) Second, links are evaluated in a depth-�rst
fashion. If we look at the previous program as the adjacency list
of a graph, the propagation of an action through its links becomes
a depth-�rst traversal in the graph. And third, due to the way in
which the Smix semantics is de�ned, such traversal is deterministic
(there is no choice involved) and always terminates.

The Plain Smix macro set. Plain Smix is a set of macros de�ned
on top of the pure Smix language. We use two of these macros
in Section 4. The �rst one is the conditional-link macro, which
behaves as a link whose activation depends on a predicate. (Note
that pure Smix predicates are associated to actions, not links as in
NCL.) In Plain Smix, a conditional link is written as

(a,p) → a1a2 . . . an

and it expands to the pair of pure Smix links

a → (p ? λ.u:η)
λ.u → a1a2 . . . an ,

where u is a novel dummy (innocuous) property of media object λ
that does not occur in any of the other links of the program, and η
stands for the null value. Using the above de�nition we can write
links that resemble those of µNCL, whose activation is conditioned
by some predicate p.

The other Plain Smix macro we use in Section 4 is the if-else
action, which provides a restricted form of branching in action
sequences. To de�ne if-else actions, we �rst need to de�ne pinned
actions and limited iteration, which are pure Smix (not Plain Smix)
constructs with no counterpart in NCL.

Pinned actions are actions that do not trigger links. We write ◦ ,
◦ , ◦ , ◦ , ◦ (with the pin above the action symbol) for the pinned
version of ordinary Smix actions. Limited iteration is a construct
used to execute a sequence of actions repeatedly within a reaction.
We write

{e ∗ a1a2 . . . an }

for exactlym repetitions of the sequence a1a2 . . . an , wherem is the
number to which expression e evaluates at the time the iteration
construct is considered. If m ≤ 0, then the iteration construct
together with its content is discarded by the interpreter.

Plain Smix uses pinned actions and limited iteration to de�ne
an if-else action of the form

(p ? ◦a1 |
◦a2),

which establishes that if predicate p holds, then pinned action ◦a1
is executed; otherwise pinned action ◦a2 is executed. This macro
expands to the following sequence of pure Smix actions

(> ? λ.u:−1)(p ? λ.u: 1){prop(λ,u) ∗ ◦a1}{−1 ∗ prop(λ,u) ∗ ◦a2},

where u is a novel dummy property of media object λ. The above
gymnastics is necessary to ensure that predicate p is evaluated
only once prior to the execution of ◦a1 or ◦a2. (The naive solu-
tion “(p ? ◦a1)(¬p ? ◦a2)” does not work as the execution of ◦a1 may
cause ¬p to evaluate to true.)

4 FROM µNCL TO PLAIN SMIX
We are now in a position to de�ne the conversion of µNCL to
Plain Smix; we will do so incrementally. In Section 4.1, we deal
only with the conversion of µNCL documents consisting of a single
context into Plain Smix. In Section 4.2, we discuss the conversion
of NCL temporal anchors. And, in Section 4.3, we discuss how the
single-context conversion can be generalized to arbitrary µNCL
documents.

4.1 Single-context conversion
The mapping of a single-context µNCL document into a corre-
sponding Plain Smix program is given by function h below, where ε
denotes the empty string, and the de�nitions of h(M), h(P), h(u),
and h(u, e), which denote, respectively, the translation of media-
object declarations, predicates, property names, and expressions,
are omitted. (As we said earlier, their translation is direct.)

Contexts, ports, and links

h(ε) = ε

h(contextx SML end) = h(S)h(M)h(L)φ
h(portx S) = λ→ (> ? x)h(S)

h(C, P do AL) = (h(C),h(P)) → h(A)h(L)

h(C, P do A1,A2 L) = (h(C),h(P)) → h(A1)h(A2)h(L)

Conditions

h(onBeginx) = x

h(onPausex) = x

h(onResumex) = x .r

h(onEndx) = x

h(onAbortx) = x .a

h(onSelectx) = x .input

h(onSetx .u) = x .h(u)

Actions

h(startx) = (> ? x)

h(pausex) = (> ? x)

h(resumex) = (state(x) = ? ◦x .rf : 1 |
◦x .rf : 0)

(prop(x , rf) = 1 ? ◦x)
(prop(x , rf) = 1 ? x .r :η)

h(stopx) = (> ? x)

h(abortx) = (state(x) , ? ◦x .af : 1 |
◦x .af : 0)

(prop(x ,af) = 1 ? ◦x)
(prop(x ,af) = 1 ? x .a:η)

h(selectx) = (> ? x .input:η)

h(setx .u B e) = (> ? x .h(u):h(u, e))

The conversion procedure implemented by functionh above uses
media object λ to represent the state of the whole single-context
µNCL document. Each port in the input µNCL document becomes
a link that starts the object mapped by the port when λ starts.
And each link in the input µNCL document becomes a conditional
Plain Smix link in the output program. The condition-action pairs
onBegin/start, onPause/pause, onEnd/stop, and onSet/set of
µNCL are translated directly to the corresponding Plain Smix targets
and actions (viz., , , ,). The remaining conditions and actions
are simulated via media-object property attributions.

The pair onSelection/select is simulated via the attribution of
Smix property “input”, which contains the last input data directed to
the object. And the pairs onResume/resume and onAbort/abort
are simulated via the attribution of the dummy properties r and a of
the target object x . Thus, an attribution to x .r means that object x
was resumed, while an attribution to x .a means that x was aborted.
The translation of the resume and abort actions use the extra
dummy properties x .rf and x .af which are �ags that make sure that
the simulated actions behave as expected. (E.g., an object cannot
be aborted twice in a row: if the �rst abort action is successfully
executed, then the second abort must be discarded.)

In the de�nition of function h, symbol φ stands for the sequence
of Smix links

x1 → (state(x1) = ∧ · · · ∧ state(xn) = ? λ)

x1.a → (state(x1) = ∧ · · · ∧ state(xn) = ? λ)

...

xn → (state(x1) = ∧ · · · ∧ state(xn) = ? λ)

xn .a → (state(x1) = ∧ · · · ∧ state(xn) = ? λ),

where x1, . . . , xn are the identi�ers of all media objects in the input
single-context µNCL document. This sequence of links simulates the
terminating condition of µNCL: whenever an object xi is stopped
or aborted, if all objects of the document are stopped, then its
presentation terminates.

As a �nal remark, note that the number of links in the output
Plain Smix program is O(n), wheren is the number of media objects,
ports and links in the original document.

Example. If we apply function h to the example µNCL docu-
ment of Section 3.1, we get the following Plain Smix program,
where φ(x1,x2,x3) denotes the sequence of links that implement
the termination condition of the original document.

λ→ (> ? x1)

(x1,>) → (> ? x2)(> ? x3)

(x2,>) → (> ? x1)

(x3.input,>) → (> ? x3.transparency: .5)
(state(x1) = ? ◦x1.rf : 1 |

◦x1.rf : 0)
(prop(x1, rf) = 1 ? ◦x1)
(prop(x1, rf) = 1 ? x1.r :η)

φ(x1,x2,x3)

In the concrete syntax of Smix, this program becomes a Lua
table [11] such as the following, where the above tautological-
conditional links are represented as ordinary links and Plain Smix
actions are expanded.

{{x1={· · ·}, x2={· · ·}, x3={· · ·}}, -- media descriptions
{{'start', lambda}, -- link #1

{true, 'start', 'x1'}},

{{'start', 'x1'}, -- link #2
{true, 'start', 'x2'},

{true, 'start', 'x3'}},

{{'stop', 'x2'}, -- link #3
{true, 'pause', 'x1'}},

{{'set', 'x3', 'input'}, -- link #4
-- action #4.1
{true, 'set', 'x3', 'transparency', .5},

-- action #4.2
{true, 'set', lambda, 'u', -1},

{function (m) return m.x1.state == 'paused' end,

'set', lambda, 'u', 1},

{'iter', function(m) return m[lambda].u end,

{true, 'set', 'x1', 'r_f', 1, 'pinned'}},

{'iter', function(m) return -1 * m[lambda].u end,

{true, 'set', 'x1', 'r_f', 0, 'pinned'}},

-- action #4.3
{function(m) return m.x1.r_f == 1 end,

'start', 'x1', nil, nil, 'pinned'},

-- action #4.4
{function(m) return m.x1.r_f == 1 end,

'set', 'x1', 'r', nil}},

.

.

. -- φ(x1, x2, x3)
}

4.2 Simulating NCL temporal anchors
In NCL, a temporal anchor denotes a temporal segment of a media
object presentation. Each temporal anchor de�nes a partially inde-
pendent presentation event, whose state transitions can be manipu-
lated by ordinary conditions and actions. More speci�cally, in µNCL-
like notation, an action startx .w , pausex .w , resumex .w , stopx .w ,
or abortx .w , respectively, starts, pauses, resumes, stops, and aborts
the presentation event of temporal anchor w of media object x ,
and, consequently, triggers condition onBeginx .w , onPausex .w ,
onResumex .w , onEndx .w , or onAbortx .w . Each anchorw de�nes
a begin-time wb and an end-time we that when reached trigger the
implicit generation of corresponding startx .w and stopx .w actions
by the environment (NCL player).

There are two uses for temporal anchors in NCL. The �rst use
is to schedule a sequence of actions to execute when the object’s
presentation reaches a particular time, which can be either the
begin time or end time of the anchor. In µNCL, this is accomplished
by links of the form

onBeginx .w, P do A1, . . . ,An , or
onEndx .w, P do A1, . . . ,An ,

which can be translated to Plain Smix as, respectively,

(x , time(x) = wb) → h(A1), . . . ,h(An), and
(x , time(x) = we) → h(A1), . . . ,h(An),

where wb and we denote the begin and end time of anchor w of x ,
and h is the conversion function de�ned in Section 4.1.

The second use for temporal anchors in NCL is to request the
presentation of a segment of the object’s content, i.e., to start the
object’s presentation from the anchor begin-time and stop it when
the anchor end-time is reached. In µNCL, this is done via a link of
the form

C, P do A1, . . . ,Ai , startx .w,Ai+2, . . . ,An ,

which can be translated to the Plain Smix links

(h(C),h(P)) → h(A1) . . .h(Ai)(state(x) = ? x .w ′:η)
h(Ai+2) . . .h(An)

x .w ′ → (> ? ◦x)(> ? x :wb)

(x , time(x) = we) → x ,

where wb and we denote the begin-time and end-time of anchor w
of x , w ′ is a dummy property of target object x , and h is the con-
version function of Section 4.1.

Although when considered in isolation the above translations
are correct, in general, to avoid undesired interactions with other
program links, it may be necessary to use dummy Smix timer ob-
jects (i.e., media objects without content) to represent the temporal
anchors of an object. In this case, instead of operating directly on
the object, the previous translations would operate on the timer that
represents the anchor. Timers objects are also used to simulate in
Smix the attributes delay and explicitDur of NCL. The former speci-
�es that an action should take e�ect only after a certain amount of
time, and the latter establishes an explicit duration to the object’s
presentation.

4.3 Simulating NCL contexts
An NCL context combines into a group a sequence of ports, a set of
properties, a set of components (media objects or other contexts),
and a sequence of links. The context itself is a self-contained module
that interacts with the environment, i.e., external components or
the NCL player (in the case of the utmost context), only through its
ports. Each port exposes an internal component to the environment,
allowing it to be manipulated by the environment. Thus once an
internal component is mapped by a context port, the environment
can submit actions (start, stop, pause, etc.) to it or listen for its
conditions (onBegin, onEnd, onPause, etc.).

Besides interfacing with the context ports, the environment can
also address the context as a unit. For instance, if x is a context and
if the environment submits an action startx to it, then this action
is propagated to all components xi such that there is a port of the
form portxi in context x . The exact behavior of external actions
over the context unit depends on the action type and on the state of
the context presentation event. Every context maintains a presenta-
tion event and, for each of its properties, an attribution event—these
events are analogous to those of media objects. (Contexts do not
have a selection event, as they cannot be selected.)

The translation procedure of µNCL contexts to Smix is a general-
ization of that de�ned by functionh of Section 4.1. In the generalized
version, instead of using the Smix media object λ to represent the
whole program, we represent each context—which from the point
of view of its components is the whole program—by a dummy timer
object that acts as a proxy for the context events. Similarly, we sim-
ulate context properties and its ports via dummy properties of the
proxy timer object.

5 THE INDUCED SEMANTICS
The semantics induced by the NCL-Smix conversion �xes three
problems of the intuitive (informal) semantics of NCL. The �rst one
has to do with the representation of logical time within documents.
The intuitive semantics of NCL treats logical time as something
whose representation and manipulation can be in�uenced by physi-
cal phenomena, such as processing or communication delays, which
are unpredictable and implementation dependent. Because of this,
it is hard (if not impossible) to predict how the language constructs
a�ect time or are a�ected by it.

To make matters concrete, consider an NCL document D contain-
ing n media objects, each of which with a temporal anchor whose
begin time is 2s, and such that as soon as D starts, all n media
objects are started. In principle, all n objects should be started si-
multaneously at instant 0s, their clocks should advance at the same
rate, and all should have their anchors activated simultaneously
at instant 2s. In practice, it may be even conceivable that that can
happen for a small n. As n gets larger, however, each object starts
to perceive a slightly di�erent global time and becomes dyssyn-
chronized in relation to the other objects. This happens because the
actual code that process each object takes a small but signi�cant
time to execute—and since in the intuitive semantics of NCL the
notion of logical time is tied to the actual running time, logical time
passes while objects are being processed, so delays accumulate and
instances that are executed later experience a greater time skew.

Smix avoids this problem by adopting the synchronous hypothe-
sis: its program reactions are conceptually instantaneous, which
means that logical time does not pass while the reaction is being
computed. So, if we repeat the previous experiment with Smix,
after the �rst reaction, which by de�nition terminates instantly,
all n objects will be started at instant 0s. And after two times the
number of ticks (“seek by 1” actions) corresponding to a second,
say t , the playback time of all n objects will be exactly the same: 2t .
The trick here is that a Smix program can only perform in real-time
if it reacts fast enough, i.e., if the physical time consumed by each
of its reactions does not exceed the period of its logical ticks.

The second problem with the intuitive semantics of NCL that
is �xed by the NCL-Smix conversion is nondeterminism. In NCL,
links (and “par” actions) are evaluated in an arbitrary order. This
arbitrary choice together with the imprecise notion of logical time
discussed previously can lead to nondeterministic behavior. Such
behavior is undesirable as deterministic programs decompose better
and are much easier to specify and analyze than nondeterministic
ones [3]. In Smix, reactions are guaranteed to be deterministic: the
same input action in the same state will always lead to the same
�nal state—no choice is involved. Similarly, the same history of
input events will always lead to the same presentation history.

The third and last problem of intuitive NCL that is �xed by the
NCL-Smix conversion is the possibility of in�nite feedback-loops in
event propagation. For instance, a naive evaluation of the following
µNCL link leads to an in�nite loop:

onBeginx ,> do stopx , startx .

When the link is activated, object x is stopped and then started,
which causes the same link to be activated. (Less trivial cycles are
also possible.) Smix avoids such feedback-loops by pre-compiling
the possible propagation paths in the program graph into imperative
programs that are guaranteed to terminate and which implement
all possible reactions in the original program [19]. A side bene�t
of this pre-compilation phase is that it simpli�es the de�nition of
procedures for program optimization.

6 IMPLEMENTATION
We implemented the conversion procedure of Section 4 in the Diet-
NCL tool [17], which is an NCL processor program and library
written in Lua [11]. The DietNCL tool transforms an input NCL
document by pushing it through sequence of �lters. Each �lter
is a Lua module that performs an orthogonal transformation. For
instance, the �rst �lter parses the input XML �le (or string) into a
Lua table that represents the document; subsequent �lters operate
over this table, and the last �lter eventually serializes the table back
to a resulting XML �le (or string).

Smaller �lters can be combined into larger ones. The complete
conversion of a full NCL document to Plain Smix consists of three
such larger �lters connected in series: to-raw, to-micro, and to-smix.
Figure 1 depicts the structure of this series.

to-raw to-micro to-smix
NCL Raw NCL µNCL Plain Smix

Figure 1: Filter series for converting NCL to Plain Smix.

The �rst �lter, to-raw, takes a (full) NCL document and converts
it to a Raw NCL document. Internally, this �lter applies a series
of simpler �lters that remove redundant elements of the input
document by rewriting them into equivalent combinations of more
basic elements. The result of the to-raw �lter is an equivalent Raw
pro�le document containing only these basic elements.

The next �lter in the series, to-micro, is concerned with the
normalization of the input Raw NCL document. Internally, it applies
in a series the �ve �lters that correspond to the pre-normalization
steps described in [20], and then applies a �lter that manipulates
the links and connectors in a way that the resulting link-connector
pairs comply with the NF1, i.e., each consists of a simple condition
plus predicate together with either a simple action or a sequence
of exactly two simple actions.

The last �lter in the series, to-smix, is a prototype implementation
of the recursive translation procedure de�ned by function h of
Section 4.1. The to-smix �lter takes a µNCL document and converts
it to a Lua table which is the corresponding Plain Smix program.
This table can be either written to a �le or string or can be used
directly by the caller, in case DietNCL is being used as a library.

This last approach, using DietNCL as library, allows us to inte-
grate the conversion directly into the Smix interpreter. By doing
so we avoid one extra parsing step from the Smix program text to
the corresponding the Lua table. Another possibility is the direct
interpretation of this table. For instance, in [19] we describe the
interpretation of Smix programs via Lua coroutines. Using this
interpretation, we can write an eval function that takes as input
an NCL document, uses the DietNCL library to obtain a Smix pro-
gram, and then builds and returns a Lua coroutine that implements
the corresponding presentation. To start this presentation, all one
would have to do is start the coroutine.

7 CONCLUSION
In this paper, we described the structured conversion of NCL doc-
uments into Smix programs. We argued that this conversion is
justi�ed because it allows us to �x—correct and establish—the se-
mantics of the input NCL documents, while producing a novel
and leaner NCL player (the Smix interpreter) and enabling further
conversions and interpretations.

The conversion per se was only possible (in theory) because Smix
is su�ciently expressive to simulate any NCL construct. And it was
only viable (in practice) because Smix is similar enough to NCL
to avoid a complete simulation, and because we could de�ne it
over µNCL. By using the preexisting reductions—from NCL to Raw
NCL and from this to µNCL (NF1)—we greatly reduced the number
of combinations we had to deal with, and consequently a signi�cant
part of the complexity of the process.

Currently, we are improving the prototype implementation of
the to-smix �lter in the DietNCL tool and also working on the
formalization and implementation of the coroutine interpretation
of Smix (which can lead to an even simpler NCL player). On the
speci�cation side, a possible future work is to “bubble up” the
semantics induced by Smix to full µNCL itself, i.e., to use the Smix
conversion to formalize and give a synchronous interpretation to
the semantics of µNCL, and consequently to full NCL.

REFERENCES
[1] ABNT 15606-2. Digital Terrestrial TV — Data Coding and Transmission Speci�ca-

tion for Digital Broadcasting — Part 2: Ginga-NCL for Fixed and Mobile Receivers:
XML Application Language for Application Coding. ABNT, São Paulo, 2007.

[2] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE, 79(9):1270–1282, September 1991.

[3] G. Berry, P. Couronne, and G. Gonthier. Synchronous programming of reac-
tive systems: An introduction to ESTEREL. In K. Fuchi and M. Nivat, editors,
Proceedings of the First Franco-Japanese Symposium on Programming of Future
Generation Computers, Tokyo, Japan, 6–8 October, 1986, pages 35–55, Amsterdam,
1988. North-Holland Publishing Company.

[4] D. Bulterman, J. Jansen, P. Cesar, S. Mullender, E. Hyche, M. DeMeglio, J. Quint,
H. Kawamura, D. Weck, X. G. Pañeda, D. Melendi, S. Cruz-Lara, M. Hanclik, D. F.
Zucker, and T. Michel. Synchronized multimedia integration language (SMIL 3.0).
Recommendation, W3C, December 2008.

[5] F. Cazenave, V. Quint, and C. Roisin. Timesheets.Js: When SMIL meets HTML5
and CSS3. In Proceedings of the 2011 ACM Symposium on Document Engineering,
DocEng ’11, pages 43–52, New York, 2011. ACM.

[6] S. M. Chung and A. L. Pereira. Timed Petri net representation of SMIL. IEEE
Multimedia, 12(1):64–72, 2005.

[7] J. dos Santos, C. Braga, and D. C. Muchaluat-Saade. A rewriting logic semantics
for NCL. Science of Computer Programming, 107(C):64–92, September 2015.

[8] O. Gaggi and A. Bossi. Analysis and veri�cation of SMIL documents. Multimedia
Systems, 17(6):487–506, 2011.

[9] GStreamer. GStreamer: Open source multimedia framework. http://gstreamer.
freedesktop.org. Accessed June 6, 2018.

[10] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O’Connor, and
S. Pfei�er. HTML5: A vocabulary and associated APIs for HTML and XHTML.
Recommendation, W3C, October 2014.

[11] R. Ierusalimschy. Programming in Lua. Lua.org, 4th edition, 2016.
[12] ISO/IEC 14496-11:2005. Information Technology — Coding of Audio-Visual Objects

— Part 11: Scene Description and Application Engine. ISO, Geneva, 2005.
[13] ITU-T Recommendation H.761. Nested Context Language (NCL) and Ginga-NCL.

ITU-T, Geneva, November 2014.
[14] H.-S. Kim. Conversion mechanism of XMT into SMIL in MPEG-4 system. In

Y.-S. H and H.-J. Kim, editors, Advances in Multimedia Information Processing —
PCM 2005: 6th Paci�c Rim Conference on Multimedia, Jeju Island, Korea, November
13–16, 2005, Proceedings, Part II, pages 912–922. Springer, Heidelberg, 2005.

[15] H.-S. Kim and C. Dae-Jea. Conversion mechanism for MPEG-4 contents services
on Web environment. In T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S. Chua, and L.-T.
Chia, editors, Advances in Multimedia Modeling: 13th International Multimedia
Modeling Conference, MMM 2007, Singapore, January 9–12, 2007. Proceedings,
Part II, pages 627–634. Springer, Heidelberg, 2006.

[16] M. Kim, S. Wood, and L.-T. Cheok. Extensible MPEG-4 textual format (XMT). In
Proceedings of the 2000 ACM Workshops on Multimedia, MULTIMEDIA ’00, pages
71–74, New York, 2000. ACM.

[17] Lab. TeleMídia. DietNCL: A tool to remove the syntactic sugar from NCL docu-
ments. http://github.com/TeleMidia/DietNCL. Accessed June 6, 2018.

[18] G. F. Lima. A synchronous virtual machine for multimedia presentations. PhD
thesis, Department of Informatics, PUC-Rio, Rio de Janeiro, 2015.

[19] G. F. Lima, C. Braga, and E. H. Haeusler. The Smix synchronous multimedia
language: Operational semantics and coroutine implementation. In Anais da
1a Escola de Informática Teórica e Métodos Formais (ETMF 2016), Natal, RN, Brazil,
22–23 November, 2016, pages 145–154, Porto Alegre, 2016. SBC.

[20] G. F. Lima and L. F. G. Soares. Two normal forms for link-connector pairs in
NCL 3.0. In Proceedings of the 19th ACM Brazilian Symposium on Multimedia and
the Web, WebMedia ’13, pages 201–204, New York, 2013. ACM.

[21] E. L. Melo, C. C. Viel, C. A. C. Teixeira, A. C. Rondon, D. de Paula Silva, D. G.
Rodrigues, and E. C. Silva. WebNCL: A web-based presentation machine for
multimedia documents. In Proceedings of the 18th Brazilian Symposium on
Multimedia and the Web, WebMedia ’12, pages 403–410, New York, 2012. ACM.

[22] F. C. Pereira and T. Ebrahimi. The MPEG-4 Book. Prentice Hall PTR, Upper Saddle
River, NJ, 2002.

[23] D. Picinin, J.-M. Farines, and C. Koliver. An approach to verify live NCL applica-
tions. In Proceedings of the 18th ACM Brazilian Symposium on Multimedia and
the Web, WebMedia ’12, pages 223–232, New York, 2012. ACM.

[24] B. Shao, L. M. Velazquez, N. Scaringella, N. Singh, and M. Mattavelli. SMIL
to MPEG-4 BIFS conversion. In Second International Conference on Automated
Production of Cross Media Content for Multi-Channel Distribution, AXMEDIS 06,
pages 77–84, December 2006.

[25] E. C. O. Silva, J. A. F. dos Santos, and D. C. Muchaluat-Saade. NCL4WEB:
Translating NCL applications to HTML5 Web pages. In Proceedings of the 2013
ACM Symposium on Document Engineering, DocEng ’13, pages 253–262, New
York, 2013. ACM.

[26] L. F. G. Soares and G. F. Lima. The NCL handbook. Monographs in computer
science, Informatics Department, PUC-Rio, Rio de Janeiro, 2013.

http://gstreamer.freedesktop.org
http://gstreamer.freedesktop.org
http://github.com/TeleMidia/DietNCL

	Abstract
	1 Introduction
	2 Related work
	3 NCL and Smix
	3.1 (Micro) NCL
	3.2 (Plain) Smix

	4 From µNCL to Plain Smix
	4.1 Single-context conversion
	4.2 Simulating NCL temporal anchors
	4.3 Simulating NCL contexts

	5 The induced semantics
	6 Implementation
	7 Conclusion
	References

