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Crivo de Eratéstenes

function E(n)
v = (false, true, true, . . ., true)

mn
fori:=2,3,4,...<yndo
if v[i] = true then
for j =1i%,i> +1,i2 +2{,i+3i,... <n do
v[j] == false
end
end
end
return v
end
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E mais facil verificar uma solucdo do que calcula-la?

f(x) = 02"

‘ ‘ [ 7" .
Escrever 02™, dado x: “tempo’” exponencial

Verificar se f(x) =y, dados (x,y): “tempo” polinomial

©(X1,...,%Xn)

e Encontrar uma valoragdo que satisfaga ¢: “tempo” exponencial (?)

Verificar se uma dada valoracio satisfaz ¢: “tempo” polinomial
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Problema verificavel vs. calculavel

PVpoii = {f: f(a1, ..., an) = b é verificivel em tempo poli}

PCpoii ={f : f(a1, ..., an) & calculdvel em tempo poli}

PVooii € PCpoii & P =NP

5/65



RN R R RRRRARRRR AR RRRARRRRRRRRRRRRRR R RRRRRRRRRRR R RRRRRRRRRRRRRRR AR TR AR RN RRRRRRRRRRARRRR BB,

Logica e computacdo

O que é (teoria da) computagdo?

(Tentativa de) conceituagdo do computavel

O que é logica?
(Tentativa de) conceituagdo do razoavel
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Logica

Razoavel
Todo evento que é passivel de explicacdo na forma argumentativa, construida
sobre fatos iniciais inquestionaveis

Légica antes de 1879

e Logica Aristotélica e Escolastica (c. 300 a.C.)
e Algebras Booleanas (Boole, 1847)
e Algebra relacional (DeMorgan, Schroeder, C.S. Peirce, séc. XIX)
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Logica como assunto matematico

1830, DeMorgan observa que a algebra n3o necessita lidar apenas com
conceitos numéricos

1854, Boole descreve uma algebra a partir de operacdes entre conjuntos e
relagdes légicas, confirmando DeMorgan

1879, Frege estabelece a l6gica como um sistema formal com uma
linguagem particular, distinta da natural; conceito formal de
prova matematica

1884, Frege busca fundamentar a aritmética em bases puramente |6gicas:

pertinéncia (€) como conceito primitivo; paradoxos (Russell,
Banach-Tarski, etc.)
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Logica e matematica na primeira metade do século XX

1903, Russell introduz a teoria dos tipos para resolver o paradoxo de Russell
1910, Russell e Whitehead publicam Principia Mathematica

1929, Presburger prova que a aritmética sem x é decidivel

1930, Traski formaliza a semantica da l6gica de primeira ordem

1930, Godel prova a completude da l6gica de primeira ordem

1931, Skolem prova que a aritmética sem + e S é decidivel

1931, Herbrand prova a consisténcia de um fragmento da aritmética (sé S)

1931, Godel introduz a ideia de aritmetizar (codificar na forma numérica) a
linguagem de um sistema formal de forma que metateoremas do
sistema possam ser vistos como teoremas aritméticos e prova o
seu famoso teorema da incompletude

1931, Godel prova a n3o-provabilidade da consisténcia
1936, Gentzen prova a consisténcia da aritmética (Haupstaz para o calculo
de sequentes)
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Computacido

Computavel

Toda tarefa que pode ser realizada por um ser burro com um minimo de
conhecimento e capacidade

burro = incapaz de aprender

conhecimento =7

Computacdo antes de 1900

e Maquina de raciocinar (Leibniz, 1667)
e Maquina de calcular de Pascal (séc. XVII)
e Maquina de Babbage (séc. XIX)
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Computacdo do ponto de vista das funcdes recursivas

1927/8, Ackermann define uma fungdo que necessita de recursdo simultanea

1931, Godel define a classe das funcdes primitivas recursivas associando-as a provas em
aritmética

1934, Rézsa Péter prova que a classe das func¢bes primitivas recursivas pode ser definida por
recursdo simples e nested a partir de funcdes constantes iniciais, identidade e
sucessor; prova que a fungdo de Ackermann ndo & primitiva recursiva (apesar de
computavel)

1936, Turing define uma maquina formal a partir de principios simples (ler, escrever e apagar
simbolos numa fita) e define o conceito de maquina universal, prova que n3o
existe uma maquina capaz de verificar se outra para ou n3o; desde o inicio sua
maquina possui versdo ndo-deterministica

1936, Church define o A-calculus e mostra que este é capaz de definir todas as funcdes para
as quais existe uma maquina de Turing

1938, Kleene aceitando que computéavel inclui parcialidade funcional, define as funcdes
parcialmente recursivas e lanca a Tese de Church

1954, Markov estabelece o conceito de computavel com base em identificacdo de palavras e
simbolos (algoritmos de Markov) e justifica o ponto de vista finitista da
computagao
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Logica combinatéria

Sxyz > (xy)xz Kxyrx Ix>x (= SKK)

0:=1 1:=P.0K :2:=P:1.LK ... m:=Pn—-1K

P = S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K)))) (KK)
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Logica combinatéria

Sxyz > (xy)xz Kxyrx Ix>x (= SKK)

0:=1 1:=P.0K :2:=P:1.LK ... m:=Pn—-1K

P = S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K)))) (KK)
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Uma fungdo f: N — N é computéavel sse:
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Logica combinatéria

Sxyz > (xy)xz Kxyrx Ix>x (= SKK)

0:=1 1:=P.0K :2:=P:1.LK ... m:=Pn—-1K

P = S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K)))) (KK)

Tese de Church

Uma fungdo f: N — N é computéavel sse:

(i) existe um combinador F = C;Cs...Cy, tal que, para todon € N,

(Fnpm) & f(n)=m
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Logica combinatéria

Sxyz > (xy)xz Kxyrx Ix>x (= SKK)

0:=1 1:=P.0K :2:=P:1.LK ... m:=Pn—-1K

P = S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K)))) (KK)

Tese de Church

Uma fungdo f: N — N é computéavel sse:

(iv) existe um algoritmo de Markov A tal que

n . . 11...
A lendo 11 {{f Para e imprime — S fn)=m
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Maquina de Turing

Modelo deterministico
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Maquina de Turing

Modelo deterministico
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Maquina de Turing

Modelo deterministico

Maquina universal
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Maquina de Turing deterministica: Variagdes

Modelo multi-cabeca

L[ [ Jouf Joud [ [ Joud [ [ ] - |

W o G

Modelo multi-fita
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A partir da década de 1950. ..

Algoritmo

N

. Conjunto de
Sequéncia de passos o
sequéncia de passos

N

N3o-determinismo Determinismo
(Paralelismo) (Paralelismo com sincronia)
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Maquina de Turing ndo-deterministica
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G

16/65



Maquina de Turing ndo-deterministica
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Maquina de Turing ndo-deterministica
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Maquina de Turing ndo-deterministica
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Maquina de Turing ndo-deterministica
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Sumario

2. Analise assintética de algoritmos



Medindo a eficiéncia de algoritmos

Modelo de computacdo

Utilizacdo de recursos: Tempo vs. meméria

Problemas que resolvem

o Computagdo de funcdes
o Problemas de otimizacdo
o Problemas de decisdo

o Linguagens

Classes de complexidade (como defini-las?)
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Problema de decisdo vs. linguagens

sim
— x € P?
nao
. 1
& Prog.
0

Problemas de decisdo ~ Linguagens formais
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Definicdes

L € TIME(f) & 3IM € TuringDet que decide L e
Jc, Vx € Strings, steps(M, x) < ¢ - f(|x])

L € SPACE(f) & IM € TuringDet que decide L e
dc, Vx € Strings, space(M, x) < ¢ - f(|x[)

e Como medir espago (memoria)?

e Qualquer tipo de funcio serve como pardmetro de medida?
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Por que classes assintéticas de funcées?

Teorema (Speedup linear)

Se uma linguagem L é decidida em tempo f(n) entdo, para qualquer € > 0,
existe uma maquina de Turing M. que decide I em tempo ef(n) +n + 2
Prova

Via modificacdo do tamanho da “palavra” de memoéria O]
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Por que classes assintéticas de funcées?

Teorema (Speedup linear)

Se uma linguagem L é decidida em tempo f(n) entdo, para qualquer € > 0,
existe uma maquina de Turing M que decide L em tempo ef(n) +n + 2

Prova
Via modificacdo do tamanho da “palavra” de memoéria O]

Consequéncia

Se L é decidida em tempo f(n) = 165n* + ... 4+ 54n + 657
Entdo L também é decidida em tempo f/(n) =nX

Obs. O mesmo teorema e técnica de prova valem para funcdes
de medida de memdria e uso de espago (nimero maximo de
células visitadas).
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Funcdes steps e space, e a robustez do modelo

e steps deve considerar o tempo de leitura da entrada?
e space deve considerar o espaco utilizado pela entrada?

e O modelo de maquina de Turing é robusto em relacdo as medidas?

Fato (Méaquina com k > 1 fitas)

Se L é reconhecida em tempo O(f(|x|)) por uma maquina multi-fita entdo L é
reconhecida em tempo O(f(|x|)?) por uma maquina com uma fita
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Funcdes de tempo construtivas

Teorema (Gap)

Existe f recursiva tal que TIME(f(n)) = TIME(2f("))

Definicio

Uma fun¢3o de tempo f & construtivel sse existe uma maquina de Turing M

tal que, para todo n, M(1™) = 1f(") e steps(M, 1™) < ¢ - f(n)

Propriedades

e Para qualquer fungcdo g computavel existe uma funcdo de tempo
construtivel f tal que g < f

e Fungdes polinomiais, exponenciais e logaritmos (inteiros) sdo fun¢des de
tempo construtiveis
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Propriedades e definicdes
Se f &€ uma funcdo de tempo construtivel ent3o

coTIME(f) = {L: 3M € TuringDet que decide L e
Vx € Strings, steps(M, x) € O(f(|x]))}

Fatos
e TIME(f) = coTIME(f)
e Sen < f(n) e|L1ALy| é finito entdo L1 € TIME(f) sse L, € TIME(f)

o TIME(f) é construtivamente enumeravel, i.e., existe uma maquina T tal
que T(i,x) = Ti(x) e TIME(f) = {L; : T; decide L;}

Definicdes

P = | J TIME(n) EXP = | | TIME(2™)
ieN ieN
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Teorema de Cantor

Teorema
Para todo conjunto B, |B| < |2B| (2B ={A:A CB))
Prova
Suponha que [B| = |2B|. Entdo existe f: B — 2B. Seja S ={x:x ¢ f(x)}.
Temos que
f1(S)eSe f1(S) ¢S,

o que é absurdo. Logo, a hipétese inicial é falsa. O

Paradoxo do barbeiro. Em uma cidade existe um barbeiro
que barbeia todos os homens que n3o barbeiam a si préprios e
somente esses.
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O método da diagonal de Cantor
Suponha que [(0, 1)| = |N]|,

apg = 0, Cl()Q apy Qg2 Qg3 ... AQon - - -
a; = 0, aig (111 app ai3 ... Qip ...
ap =0, ap az Gz, a13 ... G ...
an = 0, ano an1 an2 ansz ... ann s

Seja b =0,bgbybs...by ... tal que

{5 se (_1)']' = 9
bj = .
9 sendo

Temos que Vi(aj; #b). Logo, |(0,1)] # |N].
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Hierarquia prépria de fun¢des construtivas

Paras = {(T,x) : T(x) para em no maximo f(|x|) passos}

Fatos

e Para; € TIME((f(n))?)
e Para; ¢ TIME(f| % |)

Corolarios

o TIME(f(n)) € TIME((f(2n + 1))3)
o P C EXP
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4. Classes de complexidade e algumas relacdes



Classes de complexidade e algumas relacdes

PSPACE = | | SPACE(n')  NPSPACE = | ] NSPACE(n})

ieN ieN
NP = | | NTIME(n') L = SPACE(logn)
Len NL = NSPACE(logn)

LCNLCPCNPC PSPACE C EXP
Il
NPSPACE
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Classes de complexidade e algumas relagdes (cont.)

SPACE(f(n)) € NSPACE(f(n)) e TIME(f(n)) € NTIME(f(n))
NTIME(f(n)) € SPACE(f(n))

NSPACE(f(n)) C TIME(k'egn+f(n)) (num. conf. + REACHABILITY)
REACHABILITY € SPACE(Iog2 n) e NSPACE(f(n)) € SPACE((f(n))?)

nam. nés alcancaveis. € NSPACE(logn)
= NSPACE(f(n)) = coNSPACE(f(n))
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5. P=NP?



A ciéncia da computacio hoje: P L NP (Cook, 1971)

P Encontra solucdo em tempo polinomial
NP Verifica solucdo em tempo polinomial

coNP Verifica que n3o é solugdo em tempo polinomial

SAT € NP TAUT € coNP
<~ ——

verificacdo prova
de modelos de teoremas
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A ciéncia da computacio hoje: P L NP (Cook, 1971)

P Encontra solucdo em tempo polinomial
NP Verifica solucdo em tempo polinomial

coNP Verifica que n3o é solugdo em tempo polinomial

SAT € NP TAUT € coNP
<~ ——

verificacdo prova
de modelos de teoremas

Obs. Se coNP # NP entdo NP # P. '
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Completude

Definicdo
Seja P um problema (linguagem) e seja C uma classe de problemas. Ento

P & C-completo < todo problema de C é redutivel a P,

i.e., resolver P é t3o dificil quanto resolver qualquer outro problema de C
Exemplos

e Saber se um programa para (via outro programa) é R-completo—R ¢é o
conjunto dos problemas (ling.) recursivos

e Saber se uma solucio para um problema é verificadvel em tempo polinomial
é t3o dificil quanto decidir se uma sentenca da légica proposicional é
“verdadeira”™—SAT é NP-completo
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Hierarquia de classes de complexidade, supondo P # NP
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Hierarquia de classes de complexidade, supondo P # NP

PrIMES

Sar,
3Sar [ S )

decidir se uma
férmula de LPO
é satisfativel

decidir se duas
clausulas de Horn
prop. sdo equiv.

HorNSaT,
1 2Sar

31/65



RN R R RRRRARRRR AR RRRARRRRRRRRRRRRRR R RRRRRRRRRRR R RRRRRRRRRRRRRRR AR TR AR RN RRRRRRRRRRARRRR BB,

Sumario

6. Oraculos



Importante

Fato

Existe um oraculo B tal que P® = NP®

Prova

NPSPACE = PSPACE e B um problema NPSPACE-completo O]
Fato

Existe um oraculo C tal que P¢ + NP¢

Prova

Via diagonalizacdo [
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Importante

Fato

Existe um oraculo B tal que P® = NP®

Prova

NPSPACE = PSPACE e B um problema NPSPACE-completo O]
Fato

Existe um oraculo C tal que P¢ + NP¢

Prova

Via diagonalizacdo [

. ~ . - . . o ?
Discussdo. Uso de simulagio e diagonalizagio para provar P = NP.
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7. Aplicacdes de diagonalizacdo uniforme
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Importante

Fato
Se P # NP entdo NP — NP-completo # &

Prova
Via diagonalizagdo uniforme (Ladner, 1975)
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Lema
Sejam duas classes de linguagens Cy e Cy tais que

1. Ambas sdo construtivamente enumeraveis
2. Ambas sio fechadas para variacdo finita
3. Existe 1 ¢ C1 el ¢ Co

Ent3o, existe L tal que

LZCiuCy e LK1l

Prova
Via diagonalizacdo [

Teorema
Se P £ NP, entdo

SAT ¢ P e @ ¢ NP-completo = 3L(L ¢ P UNP-completo)
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Representacdo vs. complexidade

Pergunta. A escolha do formato de representacdo de dados
pode alterar a complexidade de um problema?

Teorema
Se alguma linguagem unaria for NP-completa, entdo P = NP

Prova
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8. Hierarquias de Kleene e polinomial



Hierarquia de Kleene
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Hierarquia polinomial
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9. Circuitos booleanos



Circuitos booleanos

Definicdo
Um circuito booleano é um digrafo aciclico com nés AND, OR, NOT, nés
iniciais (sem arco entrante) e apenas um né terminal (sem saida)

Exemplo

(xa A=((x1 Vx) A (7% V =x2))) V (mxs A (xa V xe) A (7x1 V —xz2))
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Circuito booleano para REACHABILITY

oA W N e

-

N

w

o

= O B O O

o o o o~

o © ©o o o

o o o~ O

o o o o~

OXOOI 00010] [L000O] [00000] [1000O]
= |
AVAVAVAN VAVAVAVAN IR VAVAVAVAVASERVAVAVAVAVAY
XVV\/V VVVVV] VVWVVV] VYV VYV
= |
AN ANNAN VAVAVAVAN IR VAVAVAVAVASERVAVAVAVAVAN
MVVVV] MVVVV] VVWVVV] VYV VYV
AR’
gvvvv (\WAVAVAYAY] BN \YAVAVAVAY] BEAVAVAVAVAVAERVAVAVAVAYS
- |
/\ %E/\A/\/\ ANNAN] ANNNN ANNNAN
\AYAVAYAY] BN \VAVAVAVAY] BN \VAVAVAVAY IEAVAVAVAVAVARERVAVAVAVAYS

direto

pass. por 1

pass. por 1
ou direto

pass. por 2

(poss. por 1 tbhm.)

pass. por 2,1
ou direto

pass. por 5,4,3,
2,1 ou direto

39/65



Familias de circuitos booleanos

Definicio

Uma linguagem L é decidida por uma familia de circuitos booleanos (C;)ien
sse, para todo s € String tal que |s| =n,

ChaceitassselLl

Pergunta
O tamanho de um circuito depende da complexidade (em MT) do problema
de decisdo associado? (Resposta no préximo slide)

Obs. REACHABILITY tem circuitos de tamanho O(n3) e
profundidade O(n).

Conjectura

Todo problema de decisdo com familias de circuitos de tamanho polinomial é
um problema que esta em P (7)
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Pergunta (anterior)

O tamanho de um circuito depende da complexidade (em MT) do problema
de decis3o associado?

Resposta
N3o. Problemas indecidiveis de familias polinomiais de circuitos booleanos

Exemplo

Seja D C {1}* uma linguagem indecidivel e seja (A;)ien uma familia de
circuitos tal que

1. se 1¥ € D entdo Ay é um circuito sé com portas AND e k fontes

2. se 1¥ ¢ D entdo Ay é um circuito sé6 com portas AND e uma porta
final NOT
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Familias uniformes de circuitos booleanos

Fato
NLSPACE C P (klogm = n)

Defini¢do

Uma familia de circuitos booleanos (Ci)ien € uniforme sse

existe M € TuringNDet que dada a entrada 1™ gera o circuito Cy,
usando logn células da fita

Exemplo
REACHABILITY possui familia uniforme de circuitos booleanos

e Dado n, existe uma MT para gerar gerar C,, usando somente logn células
da fita

e Gerar todos os circuitos de profundidade n com n? nés fontes e verificar se
a forma é a requerida
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Conjectura (Nova)

P ={L:L é aceita por familias uniformes de circuitos booleanos

de tamanho polinomial} (7)

Prova
Via a mesma construcdo usada na prova de que SAT é NP-completo e a

definicdo de familia de circuitos de tamanho polinomial.

D Trivial.
Seja L € P. Existe M € TuringDet que decide L em tempo n*. Sejaw € L
tal que lw| = n. Dada a tabela de computacdo de M constréi-se um

N

circuito Cy,.
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Tabela de computacdo de M para a entrada w

[TODO]
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Observacdes

1. O tamanho do circuito [TODO] s6 depende de M
Se I' = Est(M) U Alfa(M) U {0, =} e ¢ = |I'| ent3o |Pad| = 3¢

2. w c T sse o circuito tem valor “true” quando alimentado com cod(w)

3. A construgdo de um circuito Cj,,| é feita a partir de M e |w| usando-se
espaco de ordem loglw| na fita; o algoritmo imprime na fita de saida as
diversas c6pias de Pad (de tamanho independente da entrada) com as
respectivas jun¢des de E/S que usam espaco de ordem log/w|
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Proposicao
Toda linguagem 1L € P possui familia uniforme de circuitos booleanos de
tamanho polinomial

Coroléario
Se existe L € NP tal que toda familia uniforme de circuitos que decide L nio
tem tamanho limitada por nenhum polinémio, entdo P # NP

Um caminho para provar P # NP

Provar que algum problema NP-completo possui cota inferior
super-polinomial
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Circuitos vs. circuitos monoténicos
Definicdes

e Um circuito € monoténico se ndo possui porta NOT
e Uma fungdo booleana f & monotdnica sse

as<b="f(xg,...,0q, ..., %) <f(x1,...,b,...%n)

Observacdes

e Todo circuito monotdnico computa uma funcdo monotdnica

e O circuito utilizado na demostracdo da conjectura & monotdnico, i.e., o
problema (P-completo) de avaliar um circuito é redutivel via circuitos
monotdnicos (expressividade!)

Exemplos

e Monoténicos: REACHABILITY, HAMILTON CYCLE, CLIQUE
e N3o-monotdnicos: KNAPSACK, cobertura euleriana
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Circuitos ingénuos monoténicos para computar CLIQUE,

1 n 1 n 1 n 1 n
(100101010] [100101010] (100101010] [100101010]
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Circuitos ingénuos monoténicos para computar CLIQUE,

1 n 1 n 1 n 1 n
(100101010] [100101010] (100101010] [100101010]

NA-- - AANAAN - NA

Al
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Circuitos ingénuos monoténicos para computar CLIQUE,
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Circuitos ingénuos monoténicos para computar CLIQUE,

Def. CC(Sy,...,Sm) € o circuito
ingénuo construido a partir dos
conjuntos Sy, ..., S, de vértices.

Obs. Tam. =Xk2(}); 2™ < (

2n
n

).
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10. Teorema de Razborov



Teorema de Razborov

Teorema

Existe uma constante c tal que, para qualquer n suficientemente grande,

todos os circuitos monoténicos para CLIQUE,, x em que k = y/n tem cota
. . 8
inferior a O(2°V™)
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Razborov: Estratégia de prova

1. Considerar um circuito monoténico C qualquer

o Considerar tipos particulares de exemplos negativos e positivos para teste de
clique (exemplos em quantidade exponencial)

2. Aproximar C via um circuito ingénuo CC(Sy, ..., Sm) introduzindo um
namero pequeno (poli) de falsos positivos e falsos negativos

3. Cada aproximagdo é executada sobre uma porta (gate) do circuito

4. Demonstra-se que o circuito ingénuo resultante da aplicacdo de “3" a todas
as portas de C tem uma quantidade exponencial de falsos positivos e falos
negativos

5. Conclui-se que C s6 pode ter uma quantidade exponencial de portas
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Positivos e negativos

Exemplo positivo

Grafo simples com n vértices contendo um subgrafo completo de tamanho k
e Existem (}}) exemplos positivos

Exemplo negativo

Um grafo com n vértices e (k — 1)-coloravel

e Existem (k —1)™ exemplos negativos
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Resultado importante para o teorema de Razborov

Lema de Erdds-Rado

Seja F uma familia de conjuntos com mais que M = (p — 1)t - LI elementos,
todos ndo vazios e todos com cardinalidade maxima L. Ent3do F contém um
“girassol”,

ZiN Z]' =7y N Z, = Nicleo

Prova
Via inducdo em L. O
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Construgdo indutiva do circuito aproximante para C (1)
Base: C = gy;
Porta de entrada gij, Aprox(C) = CC({gi;})
Passo indutivo: C = C; OR Cy
Aprox(Cy1) = CC(Fy)

Aprox(Cs) = CC(F,)
Aprox(C) = CC(FL UFy)

Obs. Manter a cardinalidade dos geradores do circuito ingénuo.

Se |F1 U Fy| > M, substituir os elementos do “girassol” pelo seu nicleo
Aprox(C) = CC(Nu(Fy UF))

Se usarmos M = (p — 1)L - LI, forcamos a existéncia de “girasséis’ com
pétalas de tamanho L
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Construgdo indutiva do circuito aproximante para C (2)

Passo indutivo: C = C; AND C,

Aprox(Cy) = CC(Fy)
Aprox(Ca) = CC(F»)
Aprox(C) = CC(Nu({XUY:XeFy e |XUY|I LKL}
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Lemas

1. Cada aproximac¢3o introduz no maximo,
M227P(k—1)™ falsos positivos

ofn—L—1 .
M (k—L—1> falsos negativos

2. Todo circuito aproximante ou & idéntico ao circuito “falso” ou resulta em
“verdadeiro” em pelo menos metade dos exemplos negativos
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O que é introduzir falsos positivos ou falsos negativos?

Obs. No caso base da construgdo do circuito aproxi-
mante Aprox({gij}) = CC({gy;}), a aproximagao é exatal!

e Se C =C; ORCy, Aprox(Cy) = CC(F;), CC(F;) retorna “verdadeiro” para
algum 1 quando alimentado com um exemplo positivo G, e Aprox(C)
retorna “falso” quando alimentado com G

= Aprox(C) introduziu um falso negativo
e Se C = C; ORCy, Aprox(C;) = CC(F;), CC(F;) retorna “falso” para
algum i quando alimentado com um exemplo negativo G, e Aprox(C)
retorna “verdadeiro” quando alimentado com G

= Aprox(C) introduziu um falso positivo

e C = C; AND Cy, similar aos casos anteriores
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Lema: Max. M227P(k — 1)™ falsos positivos por aprox. (1)

Caso C=C; ORCy

Entdo Aprox(C;i) = CC(F;) e Aprox(C) = CC(Nu(Fy U F)).

e A introducdo de falsos positivos & “culpa” do operador Nu

e Substitui-se (Zy,...,Zp), um “girassol”, por Z, seu nicleo em F; UF;
o Se G é falso positivo, entdo. ..

Zy,Z €F
Zl,Z3,Zp €k

Perguntas.

(i) Quantas cores diferentes podem haver no nicleo?

(i) Qual a probabilidade de se colorir todos os
vértices em G com repeticdo e o niicleo ndo?
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Lema: Max. M227P(k — 1)™ falsos positivos por aprox. (2)
Seja Rep(X) = "Ha cores repetidas em X"'. Entdo

prob(Rep(Z;) N\ --- A Rep(Z,) A —~Rep(Z)) < prob(Rep(Z1) A--- /A Rep(Z,)) | ~Rep(Z)
prob(Rep(Z1) A--- A Rep(Z,) A—Rep(Z))

= prob(Rep(Z1) A\--- ARep(Z;)) | ~Rep(Z)

~Rep(Z)
P P
=] | = prob(Rep(Z:) | ~Rep(Z)) < | [ prob(Rep(Z;)) < 277
= i=1
; L! (Im)!
(5) _ G _mom _ mow 1
FREP(Z) =TT SIS ol T el N2

Estimativa de falsos positivos por operacio Nu na OR-aproximac3o:

<27h (k=1 2M/(p—1)
—_——— —m

coloragdes  opera¢des Nu
possiveis
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Lema: Max. M227P(k — 1)™ falsos positivos por aprox. (3)

Caso C = C; AND G,

Aprox(C) = CC(Nu({XUY:XeF e XUY| <L}
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Lema: Max. M227P(k — 1)™ falsos positivos por aprox. (3)

Caso C = C; AND G,

Aprox(C) = CC(Nu ({M:X €Fe IXUYl < L))

Inclui no maximo 277 N3o inclui Pode retirar positivos mas
falsos positivos por Nu falsos positivos nunca inclui falsos positivos
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Lema: Max. M227P(k — 1)™ falsos positivos por aprox. (3)
Caso C = C; AND G,

Aprox(C) = CC( Nu ({M :X€eFelX UYl < L))

Inclui no maximo 277 N3o inclui Pode retirar positivos mas

falsos positivos por Nu falsos positivos nunca inclui falsos positivos

Logo, estimativa de falsos positivos por operacio Nu na AND-aproximag3o:

<27P(k—1)"M?
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. . 2 /m—L-1 -
Lema: Max. M?(} ") falsos negativos por aprox. (1)
1. Nu n3o introduz falsos negativos

= A aproximacdo para OR n3o introduz falsos negativos

2. C=C1AND C,
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. . 2 /m—L-1 -
Lema: Max. M?(} ") falsos negativos por aprox. (1)
1. Nu n3o introduz falsos negativos

= A aproximacdo para OR n3o introduz falsos negativos

2. C=C1AND C,

Se—
s
S
o5
e 9%

<
©» ,.;s:<
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. . 2 /m—L-1 -
Lema: Max. M?(} ") falsos negativos por aprox. (1)
1. Nu n3o introduz falsos negativos

= A aproximacdo para OR n3o introduz falsos negativos

2. C=C1AND C,

CC(IXUY:XeF,YeF e XUYI<L)
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. . 2 /m—L-1 -
Lema: Max. M?(} ") falsos negativos por aprox. (1)
1. Nu n3o introduz falsos negativos

= A aproximacdo para OR n3o introduz falsos negativos
2. C=C;AND C,

CC(IXUY:XeF,YeF e XUYI<L)

<
N
i
—
L

2
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Lema: Max. M2("11) falsos negativos por aprox. (1)
1. Nu n3o introduz falsos negativos
= A aproximacdo para OR n3o introduz falsos negativos

2. C=C1AND C,

k—L-1

M2(R210])

—_—

pares falsos neg.
possiveis por retirada
Obs. L< [XUY].

CC(IXUY:XeF,YeF e XUYI<L)

Q
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Lema: Max. Mz(

n—L-1
k—L—1

) falsos negativos por aprox. (2)
Aprox(C1) = CC(Fy1)




Lema: Todo circuito aproximante ou é idéntico ao circuito
“falso” ou resulta em “verdadeiro’ em pelo menos metade
dos exemplos negativos

1. A operac3o de aproximacdo de um AND pode deletar todos os pares

2. Se o circuito aproximante, ingénuo CC(Xqy, ..., Xp), aceita algum circuito,
entdo algum X; aceita os exemplos negativos (tém cliques)

Logo, existem

, L! (¥m)!
(5 < (2) o T _ (Fmoyrar _ 1
k—1 k-1 k-1  ¢m—-1 2

exemplos de circuitos com k — 1 coloracdes num circuito de L vértices
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Colapso da hierarquia polinomial de complexidade

Definicdo
P /poly é a classe de linguagens aceitas por circuitos booleanos de tamanho
polinomial
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Exemplo positivo de tamanho n

Um grafo com (

k
2

) arestas conectando k vértices de todas as formas possiveis

Obs. Existem (

n
k

) exemplos positivos.
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Exemplo negativo de tamanho n

Colorir os vértices com (k — 1) cores diferentes e unir por uma aresta todos os
pares de nés que s3o coloridos com cores diferentes

Obs. Existem (k — 1)™ exemplos negativos (contando isomorfismo).
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Exemplo negativo de tamanho n

Colorir os vértices com (k — 1) cores diferentes e unir por uma aresta todos os
pares de nés que s3o coloridos com cores diferentes

| S S
IN NN
N\
. N\ A\ A i.
— N\ \\%\// 7n
K
. > NN
> RN
_— ™ A\ ]\\\\\
., N\ N
- >< > -
~—_ S i
~_ XN
T~ XN/
R
- / < \}ZQ\\
./, / i :.
/ S
oy e
/ // — / d
.//// T /.

Obs.

Existem (k —1)™ exemplos negativos (contando isomorfismo).
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Exemplo negativo de tamanho n

Colorir os vértices com (k — 1) cores diferentes e unir por uma aresta todos os

pares de nés que sdo coloridos com cores diferentes

0O
@ =0
_ 5
-
— T~
o— —@
—
— -
-
-
<
> L
-
-
[ -0
7
-
e o

Obs. Existem (k —1)™ exemplos negativos (contando isomorfismo).
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Exemplo negativo de tamanho n

Colorir os vértices com (k — 1) cores diferentes e unir por uma aresta todos os
pares de nés que s3o coloridos com cores diferentes

Obs. Existem (k —1)™ exemplos negativos (contando isomorfismo).
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Exemplo negativo de tamanho n

Colorir os vértices com (k — 1) cores diferentes e unir por uma aresta todos os
pares de nés que s3o coloridos com cores diferentes

\
N

()
M*
./%%/.

Obs. Existem (k —1)™ exemplos negativos (contando isomorfismo).
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Exemplo negativo de tamanho n
Colorir os vértices com (k — 1) cores diferentes e unir por uma aresta todos os

pares de nés que sdo coloridos com cores diferentes

N \.
A/

> %
K

.\\_.W

Obs. Existem (k —1)™ exemplos negativos (contando isomorfismo).
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Prova: Speedup linear
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Prova: Speedup linear

Mo fafbfefo [ [ [ [T T[]

|Z| simbolos, |Q| estados

Seja m um inteiro (dependendo de € e M),

"qoqD
DD

|Zc] = |Z] 4+ |Z]™ simbolos
|Qcl > |Q| estados



Prova: Speedup linear—simulacdo de M por M,

[y

Copiar os n simbolos de entrada para as n/m células de M [n + 2 passos]
Simular m passos de M em seis passos de M, [6f(n)/m passos]|
o E,D,D,E: “ler" simbolos relevantes e armazena-los nos estados

o E,D ou D,E: fazer as m substituicées

Total de 6f(n)/m+n+2 passos, fazendo-se m = 6/¢ obtém-se o resultado

[ [afbfc[b]c]afafc]c].[bfc] - |

**20DDIq

2qo




Prova: 3f(TIME(f(n)) = TIME(2f™))

Pred(i, k) sse VMogj<i, Vx € L5, tal que |x] <,
steps(M;, x) < k e steps(M;, x) > 2*

N(@i) = Zlalfabetoj K
j=0

em que
2

s<N(i) e Pred(i,22 )
—~—

S vezes



Prova: Paras ¢ TIME(f|3])

Suponha que Paray € TIME(f| 7 |) e seja

Diag(T) = {“n.so,',' o Tooray (T T) =i
sim S€nao

Diag; roda em tempo f([%ﬂ =f(n)

Diag(Diags) = “sim” Tpara, (Diagy, Diag¢) = “néo”

/

Diag; ndo aceita sua descricdo em tempo f(n)

n

Diag(Diags) = “ndo” Tpara, (Diagy, Diags) = “sim”

/

Diag; aceita sua descricdo em tempo f(n)



Prova: Existe um oraculo B tal que P® = NP®
Se B = {(T,w, 1¥) : w & aceita por T usando no maximo k células}, entdo

P® c NPB (trivial)
NPB c pA
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Prova: Existe um oraculo B tal que P® = NP®
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Prova: Existe um oraculo B tal que P® = NP®
Se B = {(T,w, 1¥) : w & aceita por T usando no maximo k células}, entdo

P® c NPB (trivial)
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Prova: Existe um oraculo B tal que P® = NP®
Se B = {(T,w, 1¥) : w & aceita por T usando no maximo k células}, entdo

P® c NPB (trivial)

Le NPP cpP?
welLl T T/
w - Wy :
/
pwh{ AT wn 19) S AL B S
—
Lsim” |




Prova: Existe um oraculo B tal que P® = NP®

Se B = {(T,w, 1¥) : w & aceita por T usando no maximo k células}, entdo

P® c NPB (trivial)

Lec NP cP?
welL T T
v ]
plwh{  A:[(T” wn.1%) AT wn 19)]
_ =
. P/ (Iwl)
=

E
B

lk

Wsk



Prova: Existe um oraculo B tal que P® = NP®
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P® c NPB (trivial)
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Prova: Existe um oraculo B tal que P® = NP®
Se B = {(T,w, 1¥) : w & aceita por T usando no maximo k células}, entdo
P® c NPB (trivial)
Le NPPCPA oL

welL T A (T, w, 1P W)y T/
wo wo
v ] o] /
piwl) AT wn,15) A:[(T", wn,1¥) : 1k
—
. P/ (Iwl)
Lem ]



Prova: Existe um oraculo C tal que P¢ £ NP¢

Sejam
e X um oraculo qualquer

e {To,T1,..., Tn,...} uma enumeracio construtiva de PX tal que, para
todo x e k, Ti(x) para em no maximo |x|* + k passos

o L, ={0":3x(xeXelxl=n)} (L. € NPX)
Vamos definir um oraculo C (do tipo X) tal que L¢ ¢ P€

Obs. [x|*+k < 2/*I i.e., a quantidade de strings de tamanho |x|
é maior do que qualquer polinémio em |x|.

Qualquer Ty € P€ calculando Ty (w) pode submeter no maximo [x/* + k
strings de tamanho |x| ao oraculo C,

NPC ¢ P€



Prova: Existe um oraculo C tal que P¢ # NP (cont.)

Diagonalizacdo em partes para definir C:
C0)=o Ci)={w:weCelw =1} W] = max{lw|: w € W}
Objetivo
e Se Tic(lfl)(Oi) ="sim"”, entdo C(i) =@
e Se Tic(i_l)(Oi) ="n3o0", entdo
CH) ={minfw:w|>|CA—1)"+i—1 e 2™ > mwi+i}
Suponha que L¢ € PC. Entdo existe T; que aceita L¢. Logo,

TEOH ="im" =0t e Ci) =@

1

TE(0Y) ="n3o" = 0' ¢ C(i) 5 0}

1

O que é absurdo. Portanto,
Lc ¢ PC



Prova: Lema

Sejam C; e Cy construtivamente enumeraveis. Entdo
ITH(i=1,2)(j € N), T} decide L} € C;
Define-se G tal que G€ P e
VidzeL*, zeLiAlj ez € G (1)
Fazendo-se L = (LN G) U (Lo N G),

() =Vidzei* zelAljezeG



Prova: Lema (cont.)

Sejam
Zjl’“p = menor palavra z com |z| > nez € LlALl
Zj2’np = menor palavrazcom |z| >nez¢€ LzAL}
Ri(n) = max{|Z" [} + 1

Entdo

L1 ¢ C; = L1ALL # @, para todo i
C; fechada por var. finita = Vj,n > j, 3z € AL

Logo, R; é total e computavel. Sejam

R(n) > max{R1(n), Ra2(n)} (tempo construtivel)
G ={x:R™(0) < x| <R*™1(0) e n >0}

Entdio G P



Prova: Lema (cont.)
Seja T uma maquina de Turing que conta o tempo de R. Ent3o

T(x) para em exatamente R(|x|) passos
Algoritmo

1. Executar |x| passos de T(19) verificando se
R(0) > x| = R(0) > x| > 0

2. Executar |x| passos de T(1R(0)) verificando se
R2(0) > |x| = R2(0) > |x| > R(0)

n. Executar |x| passos de T(1R"(9)) verificando se
R™(0) > x| = R™(0) > |x| > R*1(0)

Até achar o intervalo e, ent3o, verificar se n & par ou impar



Prova: dL unaria NP-completa = P = NP
Se FL unaria e NP-completa, entdo existe uma redugdo R polinomial tal que
X € SAT < R(x) € L

Seja t € {0, 1}* e seja Alt] a formula A avaliada parcialmente por t (ordem
nas letras),

A
PN
A[0] All]
e ™~ n—IAl
A00]  A[01] A[10]  A[l1] -

V...FVV...F F...VV...V




Prova: 3L unaria NP-completa = P = NP (cont.)

Construgdo de algoritmo poli para SAT

function verif; (A[t]) function verify(A[t])
if [t| =n then if [t| =n then
return Alt] # {} return Alt] # {}
else end
return verif; (A[t0]) or verif; (A[t1]) if Tab(hash(t)) then
end return Tab(hash(t))
end else

insere o resultado em Tab
return verif, (A[t0]) or verif,(A[tl])
end
end

Propriedades desejaveis do hashing

1. Ter dominio pequeno (polinomial)
2. Se hash(t) = hash(t’) entdo A[t] € SAT sse A[t] € SAT

(1), (2) = hash(t) = R(A[t]).




Prova: 3L unaria NP-completa = P = NP (cont.)

Estimativa de complexidade de verif,

1. Se C é o namero de chamadas recursivas entdo verif, € O(C - p(n))
2. Existe uma sequéncia de avaliacdes parciais {ty, ..., ti} tal que

o k>C/2n

o todas as chamadas associadas sdo recursivas

o nenhum t; é prefixo de nenhum t; (i #j)

Logo, se o valor maximo de k & p(n), entdo

p(n) > C/2n = O(np?(n)) é a cota para verify
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