
Complexidade computacional, lógica e teoria da prova
Tópicos em teoria de complexidade

Prof. Edward Hermann Haeusler

Lab. TecMF, DI, PUC-Rio

03/2017

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Crivo de Eratóstenes

function E(n)
v := 〈false, true, true, . . . , true︸ ︷︷ ︸

n

〉

for i := 2, 3, 4, . . . 6
√
n do

if v[i] = true then
for j := i2, i2 + i, i2 + 2i, i2 + 3i, . . . 6 n do

v[j] := false
end

end
end
return v

end

3/65

É mais fácil verificar uma solução do que calculá-la?

f(x) = 02
|x|

• Escrever 02
|x| , dado x: “tempo” exponencial

• Verificar se f(x) = y, dados 〈x,y〉: “tempo” polinomial

ϕ(x1, . . . , xn)

• Encontrar uma valoração que satisfaça ϕ: “tempo” exponencial (?)
• Verificar se uma dada valoração satisfaz ϕ: “tempo” polinomial

4/65

Problema verificável vs. calculável

PVpoli = {f : f(a1, . . . ,an) = b é verificável em tempo poli}
PCpoli = {f : f(a1, . . . ,an) é calculável em tempo poli}

PVpoli ⊆ PCpoli ⇔ P = NP

5/65

Lógica e computação

O que é (teoria da) computação?
(Tentativa de) conceituação do computável

O que é lógica?
(Tentativa de) conceituação do razoável

6/65

Lógica

Razoável
Todo evento que é passível de explicação na forma argumentativa, construída
sobre fatos iniciais inquestionáveis

Lógica antes de 1879

• Lógica Aristotélica e Escolástica (c. 300 a.C.)
• Álgebras Booleanas (Boole, 1847)
• Álgebra relacional (DeMorgan, Schroeder, C. S. Peirce, séc. XIX)

7/65

Lógica como assunto matemático

1830, DeMorgan observa que a álgebra não necessita lidar apenas com
conceitos numéricos

1854, Boole descreve uma álgebra a partir de operações entre conjuntos e
relações lógicas, confirmando DeMorgan

1879, Frege estabelece a lógica como um sistema formal com uma
linguagem particular, distinta da natural; conceito formal de
prova matemática

1884, Frege busca fundamentar a aritmética em bases puramente lógicas:
pertinência (∈) como conceito primitivo; paradoxos (Russell,
Banach-Tarski, etc.)

8/65

Lógica e matemática na primeira metade do século XX

1903, Russell introduz a teoria dos tipos para resolver o paradoxo de Russell
1910, Russell e Whitehead publicam Principia Mathematica
1929, Presburger prova que a aritmética sem × é decidível
1930, Traski formaliza a semântica da lógica de primeira ordem
1930, Gödel prova a completude da lógica de primeira ordem
1931, Skolem prova que a aritmética sem + e S é decidível
1931, Herbrand prova a consistência de um fragmento da aritmética (só S)
1931, Gödel introduz a ideia de aritmetizar (codificar na forma numérica) a

linguagem de um sistema formal de forma que metateoremas do
sistema possam ser vistos como teoremas aritméticos e prova o
seu famoso teorema da incompletude

1931, Gödel prova a não-provabilidade da consistência
1936, Gentzen prova a consistência da aritmética (Haupstaz para o cálculo

de sequentes)

9/65

Computação

Computável
Toda tarefa que pode ser realizada por um ser burro com um mínimo de
conhecimento e capacidade

burro = incapaz de aprender
conhecimento = ?

Computação antes de 1900

• Máquina de raciocinar (Leibniz, 1667)
• Máquina de calcular de Pascal (séc. XVII)
• Máquina de Babbage (séc. XIX)

10/65

Computação do ponto de vista das funções recursivas
1927/8, Ackermann define uma função que necessita de recursão simultânea
1931, Gödel define a classe das funções primitivas recursivas associando-as a provas em

aritmética
1934, Rózsa Péter prova que a classe das funções primitivas recursivas pode ser definida por

recursão simples e nested a partir de funções constantes iniciais, identidade e
sucessor; prova que a função de Ackermann não é primitiva recursiva (apesar de
computável)

1936, Turing define uma máquina formal a partir de princípios simples (ler, escrever e apagar
símbolos numa fita) e define o conceito de máquina universal; prova que não
existe uma máquina capaz de verificar se outra para ou não; desde o início sua
máquina possui versão não-determinística

1936, Church define o λ-calculus e mostra que este é capaz de definir todas as funções para
as quais existe uma máquina de Turing

1938, Kleene aceitando que computável inclui parcialidade funcional, define as funções
parcialmente recursivas e lança a Tese de Church

1954, Markov estabelece o conceito de computável com base em identificação de palavras e
símbolos (algoritmos de Markov) e justifica o ponto de vista finitista da
computação

11/65

Computação do ponto de vista das funções recursivas
1927/8, Ackermann define uma função que necessita de recursão simultânea
1931, Gödel define a classe das funções primitivas recursivas associando-as a provas em

aritmética
1934, Rózsa Péter prova que a classe das funções primitivas recursivas pode ser definida por

recursão simples e nested a partir de funções constantes iniciais, identidade e
sucessor; prova que a função de Ackermann não é primitiva recursiva (apesar de
computável)

1936, Turing define uma máquina formal a partir de princípios simples (ler, escrever e apagar
símbolos numa fita) e define o conceito de máquina universal; prova que não
existe uma máquina capaz de verificar se outra para ou não; desde o início sua
máquina possui versão não-determinística

1936, Church define o λ-calculus e mostra que este é capaz de definir todas as funções para
as quais existe uma máquina de Turing

1938, Kleene aceitando que computável inclui parcialidade funcional, define as funções
parcialmente recursivas e lança a Tese de Church

1954, Markov estabelece o conceito de computável com base em identificação de palavras e
símbolos (algoritmos de Markov) e justifica o ponto de vista finitista da
computação

Máquina programável

11/65

Computação do ponto de vista das funções recursivas
1927/8, Ackermann define uma função que necessita de recursão simultânea
1931, Gödel define a classe das funções primitivas recursivas associando-as a provas em

aritmética
1934, Rózsa Péter prova que a classe das funções primitivas recursivas pode ser definida por

recursão simples e nested a partir de funções constantes iniciais, identidade e
sucessor; prova que a função de Ackermann não é primitiva recursiva (apesar de
computável)

1936, Turing define uma máquina formal a partir de princípios simples (ler, escrever e apagar
símbolos numa fita) e define o conceito de máquina universal; prova que não
existe uma máquina capaz de verificar se outra para ou não; desde o início sua
máquina possui versão não-determinística

1936, Church define o λ-calculus e mostra que este é capaz de definir todas as funções para
as quais existe uma máquina de Turing

1938, Kleene aceitando que computável inclui parcialidade funcional, define as funções
parcialmente recursivas e lança a Tese de Church

1954, Markov estabelece o conceito de computável com base em identificação de palavras e
símbolos (algoritmos de Markov) e justifica o ponto de vista finitista da
computação

Máquina programável

Programação lógica, Prolog

11/65

Computação do ponto de vista das funções recursivas
1927/8, Ackermann define uma função que necessita de recursão simultânea
1931, Gödel define a classe das funções primitivas recursivas associando-as a provas em

aritmética
1934, Rózsa Péter prova que a classe das funções primitivas recursivas pode ser definida por

recursão simples e nested a partir de funções constantes iniciais, identidade e
sucessor; prova que a função de Ackermann não é primitiva recursiva (apesar de
computável)

1936, Turing define uma máquina formal a partir de princípios simples (ler, escrever e apagar
símbolos numa fita) e define o conceito de máquina universal; prova que não
existe uma máquina capaz de verificar se outra para ou não; desde o início sua
máquina possui versão não-determinística

1936, Church define o λ-calculus e mostra que este é capaz de definir todas as funções para
as quais existe uma máquina de Turing

1938, Kleene aceitando que computável inclui parcialidade funcional, define as funções
parcialmente recursivas e lança a Tese de Church

1954, Markov estabelece o conceito de computável com base em identificação de palavras e
símbolos (algoritmos de Markov) e justifica o ponto de vista finitista da
computação

Máquina programável

Programação lógica, Prolog

Lisp, ling. funcionais

11/65

Computação do ponto de vista das funções recursivas
1927/8, Ackermann define uma função que necessita de recursão simultânea
1931, Gödel define a classe das funções primitivas recursivas associando-as a provas em

aritmética
1934, Rózsa Péter prova que a classe das funções primitivas recursivas pode ser definida por

recursão simples e nested a partir de funções constantes iniciais, identidade e
sucessor; prova que a função de Ackermann não é primitiva recursiva (apesar de
computável)

1936, Turing define uma máquina formal a partir de princípios simples (ler, escrever e apagar
símbolos numa fita) e define o conceito de máquina universal; prova que não
existe uma máquina capaz de verificar se outra para ou não; desde o início sua
máquina possui versão não-determinística

1936, Church define o λ-calculus e mostra que este é capaz de definir todas as funções para
as quais existe uma máquina de Turing

1938, Kleene aceitando que computável inclui parcialidade funcional, define as funções
parcialmente recursivas e lança a Tese de Church

1954, Markov estabelece o conceito de computável com base em identificação de palavras e
símbolos (algoritmos de Markov) e justifica o ponto de vista finitista da
computação

Máquina programável

Programação lógica, Prolog

Lisp, ling. funcionais

SNOBOL, ling. transf.

11/65

Lógica combinatória

Sxyz . (xy)xz Kxy . x Ix . x (≡ SKK)

:0: ≡ I :1: ≡ P:0:K :2: ≡ P:1:K . . . :n: ≡ P:n− 1:K

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)

Tese de Church
Uma função f : N→ N é computável sse:

12/65

Lógica combinatória

Sxyz . (xy)xz Kxy . x Ix . x (≡ SKK)

:0: ≡ I :1: ≡ P:0:K :2: ≡ P:1:K . . . :n: ≡ P:n− 1:K

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)

Tese de Church
Uma função f : N→ N é computável sse:

12/65

Lógica combinatória

Sxyz . (xy)xz Kxy . x Ix . x (≡ SKK)

:0: ≡ I :1: ≡ P:0:K :2: ≡ P:1:K . . . :n: ≡ P:n− 1:K

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)

Tese de Church
Uma função f : N→ N é computável sse:

(i) existe um combinador F = C1C2 . . .Cn tal que, para todo n ∈ N,

(F:n: . :m:)⇔ f(n) = m

12/65

Lógica combinatória

Sxyz . (xy)xz Kxy . x Ix . x (≡ SKK)

:0: ≡ I :1: ≡ P:0:K :2: ≡ P:1:K . . . :n: ≡ P:n− 1:K

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)

Tese de Church
Uma função f : N→ N é computável sse:

(ii) f é recursiva

12/65

Lógica combinatória

Sxyz . (xy)xz Kxy . x Ix . x (≡ SKK)

:0: ≡ I :1: ≡ P:0:K :2: ≡ P:1:K . . . :n: ≡ P:n− 1:K

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)

Tese de Church
Uma função f : N→ N é computável sse:

(iii) existe uma máquina de Turing M tal que

M com entrada
n

11 . . . 111
para com saída

11 . . . 111

m
⇔ f(n) = m

12/65

Lógica combinatória

Sxyz . (xy)xz Kxy . x Ix . x (≡ SKK)

:0: ≡ I :1: ≡ P:0:K :2: ≡ P:1:K . . . :n: ≡ P:n− 1:K

P ≡ S(S(KS)(S(KK)(S(KS)(S(S(KS)(SK))K))))(KK)

Tese de Church
Uma função f : N→ N é computável sse:

(iv) existe um algoritmo de Markov A tal que

A lendo
n

11 . . . 111
para e imprime

11 . . . 111

m
⇔ f(n) = m

12/65

Máquina de Turing

Modelo determinístico

σ · · ·

q

Máquina universal

U(i,a) = Ti(a)

13/65

Máquina de Turing

Modelo determinístico

σ ′ · · ·

q ′

Máquina universal

U(i,a) = Ti(a)

13/65

Máquina de Turing

Modelo determinístico

σ ′ · · ·

q ′

Máquina universal

U(i,a) = Ti(a)

13/65

Máquina de Turing determinística: Variações
Modelo multi-cabeça

σi1 σi2 σik · · ·

qi1 qi2 qi3

Modelo multi-fita

σi1 · · ·

qi1

σi2 · · ·

qi2

σi3 · · ·

qi3

1

2

k

...

14/65

A partir da década de 1950. . .

Algoritmo

Sequência de passos
Conjunto de

sequência de passos

Não-determinismo
(Paralelismo)

Determinismo
(Paralelismo com sincronia)

15/65

Máquina de Turing não-determinística

σ · · ·

q

σ1 · · ·

q1

σ′
1 · · ·

q′
1

σ′′
1 · · ·

q′′
1

σ2 · · ·

q2

σ′
2 · · ·

q′
2

σ′′
2 · · ·

q′′
2

.

16/65

Máquina de Turing não-determinística

σ · · ·

q

σ1 · · ·

q1

σ′
1 · · ·

q′
1

σ′′
1 · · ·

q′′
1

σ2 · · ·

q2

σ′
2 · · ·

q′
2

σ′′
2 · · ·

q′′
2

.

16/65

Máquina de Turing não-determinística

σ · · ·

q

σ1 · · ·

q1

σ′
1 · · ·

q′
1

σ′′
1 · · ·

q′′
1

σ2 · · ·

q2

σ′
2 · · ·

q′
2

σ′′
2 · · ·

q′′
2

.

16/65

Máquina de Turing não-determinística

σ · · ·

q

σ1 · · ·

q1

σ′
1 · · ·

q′
1

σ′′
1 · · ·

q′′
1

σ2 · · ·

q2

σ′
2 · · ·

q′
2

σ′′
2 · · ·

q′′
2

.

16/65

Máquina de Turing não-determinística

qk

σ · · ·

q

σ1 · · ·

q1

σ′
1 · · ·

q′
1

σ′′
1 · · ·

q′′
1

σ2 · · ·

q2

σ′
2 · · ·

q′
2

σ′′
2 · · ·

q′′
2

.

16/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Medindo a eficiência de algoritmos

• Modelo de computação
• Utilização de recursos: Tempo vs. memória
• Problemas que resolvem

◦ Computação de funções
◦ Problemas de otimização
◦ Problemas de decisão
◦ Linguagens

• Classes de complexidade (como defini-las?)

17/65

Problema de decisão vs. linguagens

x ∈ P?
x

sim

não

Prog.
x ∈ Σ∗

1

0

Problemas de decisão ≈ Linguagens formais

18/65

Definições

L ∈ TIME(f)⇔ ∃M ∈ TuringDet que decide L e
∃c, ∀x ∈ Strings, steps(M, x) 6 c · f(|x|)

L ∈ SPACE(f)⇔ ∃M ∈ TuringDet que decide L e
∃c, ∀x ∈ Strings, space(M, x) 6 c · f(|x|)

• Como medir espaço (memória)?
• Qualquer tipo de função serve como parâmetro de medida?

19/65

Por que classes assintóticas de funções?

Teorema (Speedup linear)
Se uma linguagem L é decidida em tempo f(n) então, para qualquer ε > 0,
existe uma máquina de Turing Mε que decide L em tempo εf(n) + n+ 2

Prova
Via modificação do tamanho da “palavra” de memória

Consequência
Se L é decidida em tempo f(n) = 165nk + . . . + 54n+ 657
Então L também é decidida em tempo f ′(n) = nk

Obs. O mesmo teorema e técnica de prova valem para funções
de medida de memória e uso de espaço (número máximo de
células visitadas).

20/65

Por que classes assintóticas de funções?

Teorema (Speedup linear)
Se uma linguagem L é decidida em tempo f(n) então, para qualquer ε > 0,
existe uma máquina de Turing Mε que decide L em tempo εf(n) + n+ 2

Prova
Via modificação do tamanho da “palavra” de memória

Consequência
Se L é decidida em tempo f(n) = 165nk + . . . + 54n+ 657
Então L também é decidida em tempo f ′(n) = nk

Obs. O mesmo teorema e técnica de prova valem para funções
de medida de memória e uso de espaço (número máximo de
células visitadas).

20/65

Funções steps e space, e a robustez do modelo

• steps deve considerar o tempo de leitura da entrada?
• space deve considerar o espaço utilizado pela entrada?
• O modelo de máquina de Turing é robusto em relação às medidas?

Fato (Máquina com k > 1 fitas)
Se L é reconhecida em tempo O(f(|x|)) por uma máquina multi-fita então L é
reconhecida em tempo O(f(|x|)2) por uma máquina com uma fita

21/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Funções de tempo construtivas

Teorema (Gap)
Existe f recursiva tal que TIME(f(n)) = TIME(2f(n))

Definição
Uma função de tempo f é construtível sse existe uma máquina de Turing M
tal que, para todo n, M(1n) = 1f(n) e steps(M, 1n) 6 c · f(n)

Propriedades

• Para qualquer função g computável existe uma função de tempo
construtível f tal que g < f

• Funções polinomiais, exponenciais e logaritmos (inteiros) são funções de
tempo construtíveis

22/65

Propriedades e definições
Se f é uma função de tempo construtível então

coTIME(f) = {L : ∃M ∈ TuringDet que decide L̄ e
∀x ∈ Strings, steps(M, x) ∈ O(f(|x|))}

Fatos

• TIME(f) = coTIME(f)

• Se n 6 f(n) e |L1∆L2| é finito então L1 ∈ TIME(f) sse L2 ∈ TIME(f)

• TIME(f) é construtivamente enumerável, i.e., existe uma máquina T tal
que T(i, x) = Ti(x) e TIME(f) = {Li : Ti decide Li}

Definições

P =
⋃
i∈N

TIME(ni) EXP =
⋃
i∈N

TIME(2n
i

)

23/65

Teorema de Cantor

Teorema
Para todo conjunto B, |B| < |2B| (2B = {A : A ⊆ B})
Prova
Suponha que |B| = |2B|. Então existe f : B→ 2B. Seja S = {x : x /∈ f(x)}.
Temos que

f−1(S) ∈ S⇔ f−1(S) /∈ S,

o que é absurdo. Logo, a hipótese inicial é falsa.

Paradoxo do barbeiro. Em uma cidade existe um barbeiro
que barbeia todos os homens que não barbeiam a si próprios e
somente esses.

24/65

O método da diagonal de Cantor
Suponha que |(0, 1)| = |N|,

a0 = 0, a00 a01 a02 a03 . . . a0n . . .

a1 = 0, a10 a11 a12 a13 . . . a1n . . .

a2 = 0, a20 a21 a22 a13 . . . a1n . . .

...
an = 0, an0 an1 an2 an3 . . . ann . . .

...

Seja b = 0,b0b1b2 . . .bn . . . tal que

bj =

{
5 se ajj = 9

9 senão

Temos que ∀i(ai 6= b). Logo, |(0, 1)| 6= |N|.

25/65

Hierarquia própria de funções construtivas

Paraf = {〈T , x〉 : T(x) para em no máximo f(|x|) passos}

Fatos

• Paraf ∈ TIME((f(n))2)

• Paraf /∈ TIME(fbn2 c)

Corolários

• TIME(f(n)) (TIME((f(2n+ 1))3)

• P (EXP

26/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Classes de complexidade e algumas relações

PSPACE =
⋃
i∈N

SPACE(ni) NPSPACE =
⋃
i∈N

NSPACE(ni)

NP =
⋃
i∈N

NTIME(ni) L = SPACE(logn)

NL = NSPACE(logn)

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

=
NPSPACE

27/65

Classes de complexidade e algumas relações (cont.)

• SPACE(f(n)) ⊆ NSPACE(f(n)) e TIME(f(n)) ⊆ NTIME(f(n))

• NTIME(f(n)) ⊆ SPACE(f(n))

• NSPACE(f(n)) ⊆ TIME(klogn+f(n)) (num. conf. +Reachability)

• Reachability ∈ SPACE(log2 n) e NSPACE(f(n)) ⊆ SPACE((f(n))2)

• núm. nós alcançáveis. ∈ NSPACE(logn)

⇒ NSPACE(f(n)) = coNSPACE(f(n))

28/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

A ciência da computação hoje: P ?
= NP (Cook, 1971)

P Encontra solução em tempo polinomial
NP Verifica solução em tempo polinomial

coNP Verifica que não é solução em tempo polinomial

Sat︸︷︷︸
verificação
de modelos

∈ NP Taut︸ ︷︷ ︸
prova

de teoremas

∈ coNP

Obs. Se coNP 6= NP então NP 6= P.

29/65

A ciência da computação hoje: P ?
= NP (Cook, 1971)

P Encontra solução em tempo polinomial
NP Verifica solução em tempo polinomial

coNP Verifica que não é solução em tempo polinomial

Sat︸︷︷︸
verificação
de modelos

∈ NP Taut︸ ︷︷ ︸
prova

de teoremas

∈ coNP

Obs. Se coNP 6= NP então NP 6= P.

29/65

Completude

Definição
Seja P um problema (linguagem) e seja C uma classe de problemas. Então

P é C-completo⇔ todo problema de C é redutível a P,

i.e., resolver P é tão difícil quanto resolver qualquer outro problema de C

Exemplos

• Saber se um programa para (via outro programa) é R-completo—R é o
conjunto dos problemas (ling.) recursivos

• Saber se uma solução para um problema é verificável em tempo polinomial
é tão difícil quanto decidir se uma sentença da lógica proposicional é
“verdadeira”—Sat é NP-completo

30/65

Hierarquia de classes de complexidade, supondo P 6= NP

O(2n)

NP

NP -comp.

P

O(n2)

O(n)

31/65

Hierarquia de classes de complexidade, supondo P 6= NP

O(2n)

NP

NP -comp.

P

O(n2)

O(n)

decidir se uma
fórmula de LPO
é satisfatível

Primes

Sat,
3Sat

decidir se duas
cláusulas de Horn
prop. são equiv.

HornSat,
2Sat

31/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Importante

Fato
Existe um oráculo B tal que PB = NPB

Prova
NPSPACE = PSPACE e B um problema NPSPACE-completo

Fato
Existe um oráculo C tal que PC 6= NPC

Prova
Via diagonalização

Discussão. Uso de simulação e diagonalização para provar P ?
= NP.

32/65

Importante

Fato
Existe um oráculo B tal que PB = NPB

Prova
NPSPACE = PSPACE e B um problema NPSPACE-completo

Fato
Existe um oráculo C tal que PC 6= NPC

Prova
Via diagonalização

Discussão. Uso de simulação e diagonalização para provar P ?
= NP.

32/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Importante

Fato
Se P 6= NP então NP− NP-completo 6= ∅
Prova
Via diagonalização uniforme (Ladner, 1975)

33/65

Lema
Sejam duas classes de linguagens C1 e C2 tais que
1. Ambas são construtivamente enumeráveis
2. Ambas são fechadas para variação finita
3. Existe L1 /∈ C1 e L2 /∈ C2

Então, existe L tal que

L /∈ C1 ∪ C2 e L 6 L1 ⊕ L2

Prova
Via diagonalização

Teorema
Se P 6= NP, então

Sat /∈ P e ∅ /∈ NP-completo ⇒ ∃L(L /∈ P∪NP-completo)

34/65

Representação vs. complexidade

Pergunta. A escolha do formato de representação de dados
pode alterar a complexidade de um problema?

Teorema
Se alguma linguagem unária for NP-completa, então P = NP

Prova

35/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Hierarquia de Kleene

36/65

Hierarquia polinomial

37/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Circuitos booleanos

Definição
Um circuito booleano é um dígrafo acíclico com nós AND, OR, NOT, nós
iniciais (sem arco entrante) e apenas um nó terminal (sem saída)

Exemplo

(x3 ∧ ¬((x1 ∨ x2)∧ (¬x1 ∨ ¬x2)))∨ (¬x3 ∧ (x1 ∨ x2)∧ (¬x1 ∨ ¬x2))

x1 ¬

∨ ∨ ∧ ¬ ∧

x2 ¬ ∨

x3 ¬ ∧

38/65

Circuito booleano para Reachability
0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧

∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨

∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧

∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨

∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨

...
...

...
...

...

∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧

∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨ ∨∨∨∨∨

direto

pass. por 1

pass. por 1
ou direto

pass. por 2
(poss. por 1 tbm.)

pass. por 2,1
ou direto

pass. por 5,4,3,
2,1 ou direto

0 1 0 0 1

0 0 0 1 0

1 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1

1

2

2

3

3

4

4

5

5

1

5 2

3 4

39/65

Famílias de circuitos booleanos
Definição
Uma linguagem L é decidida por uma família de circuitos booleanos (Ci)i∈N
sse, para todo s ∈ String tal que |s| = n,

Cn aceita s⇔ s ∈ L

Pergunta
O tamanho de um circuito depende da complexidade (em MT) do problema
de decisão associado? (Resposta no próximo slide)

Obs. Reachability tem circuitos de tamanho O(n3) e
profundidade O(n).

Conjectura
Todo problema de decisão com famílias de circuitos de tamanho polinomial é
um problema que está em P (?)

40/65

Pergunta (anterior)

O tamanho de um circuito depende da complexidade (em MT) do problema
de decisão associado?

Resposta
Não. Problemas indecidíveis de famílias polinomiais de circuitos booleanos

Exemplo
Seja D ⊂ {1}∗ uma linguagem indecidível e seja (Ai)i∈N uma família de
circuitos tal que
1. se 1k ∈ D então Ak é um circuito só com portas AND e k fontes
2. se 1k /∈ D então Ak é um circuito só com portas AND e uma porta

final NOT

41/65

Famílias uniformes de circuitos booleanos

Fato
NLSPACE ⊆ P (klogn = n)

Definição
Uma família de circuitos booleanos (Ci)i∈N é uniforme sse
existe M ∈ TuringNDet que dada a entrada 1n gera o circuito Cn
usando logn células da fita

Exemplo
Reachability possui família uniforme de circuitos booleanos
• Dado n, existe uma MT para gerar gerar Cn usando somente logn células
da fita

• Gerar todos os circuitos de profundidade n com n2 nós fontes e verificar se
a forma é a requerida

42/65

Conjectura (Nova)

P = {L : L é aceita por famílias uniformes de circuitos booleanos
de tamanho polinomial} (?)

Prova
Via a mesma construção usada na prova de que Sat é NP-completo e a
definição de família de circuitos de tamanho polinomial.
⊇ Trivial.
⊆ Seja L ∈ P. Existe M ∈ TuringDet que decide L em tempo nk. Seja w ∈ L

tal que |w| = n. Dada a tabela de computação de M constrói-se um
circuito Cn.

43/65

Tabela de computação de M para a entrada w

[TODO]

44/65

Observações

1. O tamanho do circuito [TODO] só depende de M
Se Γ = Est(M) ∪ Alfa(M) ∪ {�,⇒} e c = |Γ | então |Pad| = 3c

2. w ∈ Γ sse o circuito tem valor “true” quando alimentado com cod(w)

3. A construção de um circuito C|w| é feita a partir de M e |w| usando-se
espaço de ordem log|w| na fita; o algoritmo imprime na fita de saída as
diversas cópias de Pad (de tamanho independente da entrada) com as
respectivas junções de E/S que usam espaço de ordem log|w|

45/65

Proposição
Toda linguagem L ∈ P possui família uniforme de circuitos booleanos de
tamanho polinomial

Corolário
Se existe L ∈ NP tal que toda família uniforme de circuitos que decide L não
tem tamanho limitada por nenhum polinômio, então P 6= NP

Um caminho para provar P 6= NP

Provar que algum problema NP-completo possui cota inferior
super-polinomial

46/65

Circuitos vs. circuitos monotônicos
Definições

• Um circuito é monotônico se não possui porta NOT
• Uma função booleana f é monotônica sse

a 6 b⇒ f(x1, . . . ,a, . . . , xn) 6 f(x1, . . . ,b, . . . xn)

Observações

• Todo circuito monotônico computa uma função monotônica
• O circuito utilizado na demostração da conjectura é monotônico, i.e., o
problema (P-completo) de avaliar um circuito é redutível via circuitos
monotônicos (expressividade!)

Exemplos

• Monotônicos: Reachability, Hamilton Cycle, Clique
• Não-monotônicos: Knapsack, cobertura euleriana

47/65

Circuitos ingênuos monotônicos para computar Cliquen,k

1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

1

1 n

2

1 n

n− 1

1 n

n

1 n

1 0 0 1 0 1 0 1 0· · ·1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0vi1

1 ni1 ik

vij

1 ni1 ik

vik

1 ni1 ik

∧∧ · · · ∧∧· · ·∧∧ · · · ∧∧ · · · ∧∧ · · · ∧∧

∧∧ · · · ∧∧∧∧ · · · ∧∧

∧

...

SjS1 S(nk)

OR

· · · · · ·

Def. CC(S1, . . . ,Sm) é o circuito
ingênuo construído a partir dos
conjuntos S1, . . . , Sm de vértices.

Obs. Tam. = k2
(
n
k

)
; 2n <

(
2n
n

)
.

48/65

Circuitos ingênuos monotônicos para computar Cliquen,k

1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

1

1 n

2

1 n

n− 1

1 n

n

1 n

1 0 0 1 0 1 0 1 0· · ·1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0vi1

1 ni1 ik

vij

1 ni1 ik

vik

1 ni1 ik

∧∧ · · · ∧∧· · ·∧∧ · · · ∧∧ · · · ∧∧ · · · ∧∧

∧∧ · · · ∧∧∧∧ · · · ∧∧

∧

...

SjS1 S(nk)

OR

· · · · · ·

Def. CC(S1, . . . ,Sm) é o circuito
ingênuo construído a partir dos
conjuntos S1, . . . , Sm de vértices.

Obs. Tam. = k2
(
n
k

)
; 2n <

(
2n
n

)
.

48/65

Circuitos ingênuos monotônicos para computar Cliquen,k

1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

1

1 n

2

1 n

n− 1

1 n

n

1 n

1 0 0 1 0 1 0 1 0· · ·1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0vi1

1 ni1 ik

vij

1 ni1 ik

vik

1 ni1 ik

∧∧ · · · ∧∧· · ·∧∧ · · · ∧∧ · · · ∧∧ · · · ∧∧

∧∧ · · · ∧∧∧∧ · · · ∧∧

∧

...

SjS1 S(nk)

OR

· · · · · ·

Def. CC(S1, . . . ,Sm) é o circuito
ingênuo construído a partir dos
conjuntos S1, . . . , Sm de vértices.

Obs. Tam. = k2
(
n
k

)
; 2n <

(
2n
n

)
.

48/65

Circuitos ingênuos monotônicos para computar Cliquen,k

1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0

1

1 n

2

1 n

n− 1

1 n

n

1 n

1 0 0 1 0 1 0 1 0· · ·1 0 0 1 0 1 0 1 0 · · · 1 0 0 1 0 1 0 1 0vi1

1 ni1 ik

vij

1 ni1 ik

vik

1 ni1 ik

∧∧ · · · ∧∧· · ·∧∧ · · · ∧∧ · · · ∧∧ · · · ∧∧

∧∧ · · · ∧∧∧∧ · · · ∧∧

∧

...

SjS1 S(nk)

OR

· · · · · ·

Def. CC(S1, . . . ,Sm) é o circuito
ingênuo construído a partir dos
conjuntos S1, . . . , Sm de vértices.

Obs. Tam. = k2
(
n
k

)
; 2n <

(
2n
n

)
.

48/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Teorema de Razborov

Teorema
Existe uma constante c tal que, para qualquer n suficientemente grande,
todos os circuitos monotônicos para Cliquen,k em que k = 4

√
n tem cota

inferior a O(2c
8√n)

49/65

Razborov: Estratégia de prova

1. Considerar um circuito monotônico C qualquer
◦ Considerar tipos particulares de exemplos negativos e positivos para teste de

clique (exemplos em quantidade exponencial)

2. Aproximar C via um circuito ingênuo CC(S1, . . . ,Sm) introduzindo um
número pequeno (poli) de falsos positivos e falsos negativos

3. Cada aproximação é executada sobre uma porta (gate) do circuito
4. Demonstra-se que o circuito ingênuo resultante da aplicação de “3” a todas

as portas de C tem uma quantidade exponencial de falsos positivos e falos
negativos

5. Conclui-se que C só pode ter uma quantidade exponencial de portas

50/65

Positivos e negativos

Exemplo positivo
Grafo simples com n vértices contendo um subgrafo completo de tamanho k
• Existem

(
n
k

)
exemplos positivos

Exemplo negativo
Um grafo com n vértices e (k− 1)-colorável
• Existem (k− 1)n exemplos negativos

51/65

Resultado importante para o teorema de Razborov

Lema de Erdös-Rado
Seja F uma família de conjuntos com mais que M = (p− 1)L · L! elementos,
todos não vazios e todos com cardinalidade máxima L. Então F contém um
“girassol”,

Z1

Z2

Z3
. . .

Zj

Zj+1

. . .
Z>M

Zi ∩ Zj = Zk ∩ Zv = Núcleo

Prova
Via indução em L.

52/65

Construção indutiva do circuito aproximante para C (1)
Base: C = gij

Porta de entrada gij, Aprox(C) = CC({gij})

Passo indutivo: C = C1 OR C2

Aprox(C1) = CC(F1)

Aprox(C2) = CC(F2)

Aprox(C) = CC(F1 ∪ F2)

Obs. Manter a cardinalidade dos geradores do circuito ingênuo.

Se |F1 ∪ F2| > M, substituir os elementos do “girassol” pelo seu núcleo

Aprox(C) = CC(Nu(F1 ∪ F2))

Se usarmos M = (p− 1)L · L!, forçamos a existência de “girassóis” com
pétalas de tamanho L

53/65

Construção indutiva do circuito aproximante para C (2)

Passo indutivo: C = C1 AND C2

Aprox(C1) = CC(F1)

Aprox(C2) = CC(F2)

Aprox(C) = CC(Nu({X ∪ Y : X ∈ F1 e |X ∪ Y| 6 L}))

54/65

Lemas

1. Cada aproximação introduz no máximo,

M22−p(k− 1)n falsos positivos

M2

(
n− L− 1

k− L− 1

)
falsos negativos

2. Todo circuito aproximante ou é idêntico ao circuito “falso” ou resulta em
“verdadeiro” em pelo menos metade dos exemplos negativos

55/65

O que é introduzir falsos positivos ou falsos negativos?

Obs. No caso base da construção do circuito aproxi-
mante Aprox({gij}) = CC({gij}), a aproximação é exata!

• Se C = C1 OR C2, Aprox(Ci) = CC(Fi), CC(Fi) retorna “verdadeiro” para
algum i quando alimentado com um exemplo positivo G, e Aprox(C)
retorna “falso” quando alimentado com G

⇒ Aprox(C) introduziu um falso negativo

• Se C = C1 OR C2, Aprox(Ci) = CC(Fi), CC(Fi) retorna “falso” para
algum i quando alimentado com um exemplo negativo G, e Aprox(C)
retorna “verdadeiro” quando alimentado com G

⇒ Aprox(C) introduziu um falso positivo

• C = C1 AND C2, similar aos casos anteriores

56/65

Lema: Máx. M22−p(k− 1)n falsos positivos por aprox. (1)

Caso C = C1 OR C2

Então Aprox(Ci) = CC(Fi) e Aprox(C) = CC(Nu(F1 ∪ F2)).
• A introdução de falsos positivos é “culpa” do operador Nu

• Substitui-se (Z1, . . . ,Zp), um “girassol”, por Z, seu núcleo em F1 ∪ F2
◦ Se G é falso positivo, então. . .

Z1

Z2

Z3Zj

Zp

Z2,Z ∈ F1
Z1,Z3,Zp ∈ F2

Perguntas.
(i) Quantas cores diferentes podem haver no núcleo?
(ii) Qual a probabilidade de se colorir todos os

vértices em G com repetição e o núcleo não?

57/65

Lema: Máx. M22−p(k− 1)n falsos positivos por aprox. (2)
Seja Rep(X) = “Há cores repetidas em X”. Então

prob(Rep(Z1)∧ · · ·∧ Rep(Zp)∧ ¬Rep(Z)) 6 prob(Rep(Z1)∧ · · ·∧ Rep(Zp)) | ¬Rep(Z)

prob(Rep(Z1)∧ · · ·∧ Rep(Zp)∧ ¬Rep(Z))

¬Rep(Z)
= prob(Rep(Z1)∧ · · ·∧ Rep(Zp)) | ¬Rep(Z)

=

p∏
i=1

= prob(Rep(Zi) | ¬Rep(Z)) 6
p∏
i=1

prob(Rep(Zi)) 6 2−p

⇒Rep(Zi) =

(
|Zi|
2

)
k− 1

6

(
L
2

)
k− 1

6
L!

(L−2)!·2!

k− 1
=

(8√n)!
(8√n−2)!·2!

4
√
n− 1

6
1

2

Estimativa de falsos positivos por operação Nu na OR-aproximação:

6 2−1 · (k− 1)n︸ ︷︷ ︸
colorações
possíveis

·2M/(p− 1)︸ ︷︷ ︸
operações Nu

58/65

Lema: Máx. M22−p(k− 1)n falsos positivos por aprox. (3)

Caso C = C1 AND C2

Aprox(C) = CC(Nu ({X ∪ Y : X ∈ F1 e |X ∪ Y| 6 L}))

Inclui no máximo 2−p

falsos positivos por Nu
Não inclui
falsos positivos

Pode retirar positivos mas
nunca inclui falsos positivos

Logo, estimativa de falsos positivos por operação Nu na AND-aproximação:

6 2−p(k− 1)nM2

59/65

Lema: Máx. M22−p(k− 1)n falsos positivos por aprox. (3)

Caso C = C1 AND C2

Aprox(C) = CC(Nu ({X ∪ Y : X ∈ F1 e |X ∪ Y| 6 L}))

Inclui no máximo 2−p

falsos positivos por Nu
Não inclui
falsos positivos

Pode retirar positivos mas
nunca inclui falsos positivos

Logo, estimativa de falsos positivos por operação Nu na AND-aproximação:

6 2−p(k− 1)nM2

59/65

Lema: Máx. M22−p(k− 1)n falsos positivos por aprox. (3)

Caso C = C1 AND C2

Aprox(C) = CC(Nu ({X ∪ Y : X ∈ F1 e |X ∪ Y| 6 L}))

Inclui no máximo 2−p

falsos positivos por Nu
Não inclui
falsos positivos

Pode retirar positivos mas
nunca inclui falsos positivos

Logo, estimativa de falsos positivos por operação Nu na AND-aproximação:

6 2−p(k− 1)nM2

59/65

Lema: Máx. M2
(
n−L−1
k−L−1

)
falsos negativos por aprox. (1)

1. Nu não introduz falsos negativos

⇒ A aproximação para OR não introduz falsos negativos

2. C = C1 AND C2

≈G+

C1

C2

∧

>

>

M2
(
n−L−1
k−L−1

)
pares

possíveis
falsos neg.
por retirada

Obs. L < |X ∪ Y|.

G+

Y1 Y Yj

X1 X Xi

··· ···

··· ···

⊥

CC({X ∪ Y : X ∈ F2, Y ∈ F1 e |X ∪ Y| 6 L})

60/65

Lema: Máx. M2
(
n−L−1
k−L−1

)
falsos negativos por aprox. (1)

1. Nu não introduz falsos negativos

⇒ A aproximação para OR não introduz falsos negativos

2. C = C1 AND C2

≈

G+

C1

C2

∧

>

>

M2
(
n−L−1
k−L−1

)
pares

possíveis
falsos neg.
por retirada

Obs. L < |X ∪ Y|.

G+

Y1 Y Yj

X1 X Xi

··· ···

··· ···

⊥

CC({X ∪ Y : X ∈ F2, Y ∈ F1 e |X ∪ Y| 6 L})

60/65

Lema: Máx. M2
(
n−L−1
k−L−1

)
falsos negativos por aprox. (1)

1. Nu não introduz falsos negativos

⇒ A aproximação para OR não introduz falsos negativos

2. C = C1 AND C2

≈G+

C1

C2

∧

>

>

M2
(
n−L−1
k−L−1

)
pares

possíveis
falsos neg.
por retirada

Obs. L < |X ∪ Y|.

G+

Y1 Y Yj

X1 X Xi

··· ···

··· ···

⊥

CC({X ∪ Y : X ∈ F2, Y ∈ F1 e |X ∪ Y| 6 L})

60/65

Lema: Máx. M2
(
n−L−1
k−L−1

)
falsos negativos por aprox. (1)

1. Nu não introduz falsos negativos

⇒ A aproximação para OR não introduz falsos negativos

2. C = C1 AND C2

≈

G+

C1

C2

∧

>

>

M2
(
n−L−1
k−L−1

)

pares
possíveis

falsos neg.
por retirada

Obs. L < |X ∪ Y|.

G+

Y1 Y Yj

X1 X Xi

··· ···

··· ···

⊥

CC({X ∪ Y : X ∈ F2, Y ∈ F1 e |X ∪ Y| 6 L})

60/65

Lema: Máx. M2
(
n−L−1
k−L−1

)
falsos negativos por aprox. (1)

1. Nu não introduz falsos negativos

⇒ A aproximação para OR não introduz falsos negativos

2. C = C1 AND C2

≈

G+

C1

C2

∧

>

>

M2
(
n−L−1
k−L−1

)
pares

possíveis
falsos neg.
por retirada

Obs. L < |X ∪ Y|.

G+

Y1 Y Yj

X1 X Xi

··· ···

··· ···

⊥

CC({X ∪ Y : X ∈ F2, Y ∈ F1 e |X ∪ Y| 6 L})

60/65

Lema: Máx. M2
(
n−L−1
k−L−1

)
falsos negativos por aprox. (2)

≈
G+

G+

Y1 Y Yj ⊥

X1 X Xi ⊥

··· ···

··· ···

Aprox(C1) = CC(F1)

Aprox(C2) = CC(F2)

≈

G+

Y1 Y Yj

>
X1 X Xi

··· ···

··· ···

CC({X∪ Y : X ∈ F2 e Y ∈ F1)

G+

Y1 Y Yj

⊥
X1 X Xi

··· ···

··· ···

CC({X∪ Y : X ∈ F2,Y ∈ F1 e |X∪ Y| 6 L)

61/65

Lema: Todo circuito aproximante ou é idêntico ao circuito
“falso” ou resulta em “verdadeiro” em pelo menos metade
dos exemplos negativos

1. A operação de aproximação de um AND pode deletar todos os pares
2. Se o circuito aproximante, ingênuo CC(X1, . . . ,Xp), aceita algum circuito,

então algum Xi aceita os exemplos negativos (têm cliques)

Logo, existem

(
|Zi|
2

)
k− 1

6

(
L
2

)
k− 1

6
L!

(L−2)!·2!

k− 1
=

(8√n)!
(8√n−2)!·2!

4
√
n− 1

6
1

2

exemplos de circuitos com k− 1 colorações num circuito de L vértices

62/65

Sumário

1. Introdução

2. Análise assintótica de algoritmos

3. Funções de tempo construtivas e sua hierarquia

4. Classes de complexidade e algumas relações

5. P = NP?

6. Oráculos

7. Aplicações de diagonalização uniforme

8. Hierarquias de Kleene e polinomial

9. Circuitos booleanos

10. Teorema de Razborov

11. Colapso da hierarquia polinomial

Colapso da hierarquia polinomial de complexidade

Definição
P/poly é a classe de linguagens aceitas por circuitos booleanos de tamanho
polinomial

63/65

Exemplo positivo de tamanho n

Um grafo com
(
k
2

)
arestas conectando k vértices de todas as formas possíveis

Obs. Existem
(
n
k

)
exemplos positivos.

64/65

Exemplo negativo de tamanho n

Colorir os vértices com (k− 1) cores diferentes e unir por uma aresta todos os
pares de nós que são coloridos com cores diferentes

Obs. Existem (k− 1)n exemplos negativos (contando isomorfismo).

65/65

Exemplo negativo de tamanho n

Colorir os vértices com (k− 1) cores diferentes e unir por uma aresta todos os
pares de nós que são coloridos com cores diferentes

Obs. Existem (k− 1)n exemplos negativos (contando isomorfismo).

65/65

Exemplo negativo de tamanho n

Colorir os vértices com (k− 1) cores diferentes e unir por uma aresta todos os
pares de nós que são coloridos com cores diferentes

Obs. Existem (k− 1)n exemplos negativos (contando isomorfismo).

65/65

Exemplo negativo de tamanho n

Colorir os vértices com (k− 1) cores diferentes e unir por uma aresta todos os
pares de nós que são coloridos com cores diferentes

Obs. Existem (k− 1)n exemplos negativos (contando isomorfismo).

65/65

Exemplo negativo de tamanho n

Colorir os vértices com (k− 1) cores diferentes e unir por uma aresta todos os
pares de nós que são coloridos com cores diferentes

Obs. Existem (k− 1)n exemplos negativos (contando isomorfismo).

65/65

Exemplo negativo de tamanho n

Colorir os vértices com (k− 1) cores diferentes e unir por uma aresta todos os
pares de nós que são coloridos com cores diferentes

Obs. Existem (k− 1)n exemplos negativos (contando isomorfismo).

65/65

Fim

Prova: Speedup linear

a b c b · · ·M

|Σ| símbolos, |Q| estados

Seja m um inteiro (dependendo de ε e M),

a b c b . . . c a c a . . . · · ·

m m

a
b
c
b

...c
a

c
a

... ···

Mε

|Σε| = |Σ|+ |Σ|m símbolos
|Qε|� |Q| estados

Prova: Speedup linear

a b c b · · ·M

|Σ| símbolos, |Q| estados

Seja m um inteiro (dependendo de ε e M),

a b c b . . . c a c a . . . · · ·

m m

a
b
c
b

...c
a

c
a

... ···

Mε

|Σε| = |Σ|+ |Σ|m símbolos
|Qε|� |Q| estados

Prova: Speedup linear—simulação de M por Mε

1. Copiar os n símbolos de entrada para as n/m células de Mε [n+ 2 passos]

2. Simular m passos de M em seis passos de Mε [6f(n)/m passos]
◦ E,D,D,E: “ler” símbolos relevantes e armazená-los nos estados
◦ E,D ou D,E: fazer as m substituições

3. Total de 6f(n)/m+n+2 passos, fazendo-se m = 6/ε obtém-se o resultado

· · · a b c b c a a c c . . . b c · · ·

mm

··· ...a
b
c

b
c
a
a
c
c

...
b
c

... ···

Voltar

Prova: ∃f(TIME(f(n)) = TIME(2f(n)))

Pred(i,k) sse ∀M06j6i, ∀x ∈ Σ∗j , tal que |x| 6 i,

steps(Mj, x) 6 k e steps(Mj, x) > 2k

N(i) =

i∑
j=0

|alfabetoj|
i

f(i) = 2 2.
. .2︸︷︷︸

s vezes

em que

s 6 N(i) e Pred(i, 2 2.
. .2︸︷︷︸

s vezes

)

Voltar

Prova: Paraf /∈ TIME(fbn2 c)
Suponha que Paraf ∈ TIME(fbn2 c) e seja

Diagf(T) =

{
“não” se TParaf(T , T) = “sim”
“sim” senão

Diagf roda em tempo f(b2n+1
2 c) = f(n)

Diagf(Diagf) = “sim” TParaf(Diagf, Diagf) = “não”

Diagf(Diagf) = “não” TParaf(Diagf, Diagf) = “sim”

Diagf não aceita sua descrição em tempo f(n)

Diagf aceita sua descrição em tempo f(n)

⊥

⊥

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈

NPB ⊆ PA

3 L

w ∈ L

T

T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA

3 L

w ∈ L

T

T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA

3 L

w ∈ L

T

T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA

3 L

w ∈ L T

T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA

3 L

w ∈ L T T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA

3 L

w ∈ L T T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA 3 L

w ∈ L T T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo B tal que PB = NPB

Se B = {〈T ,w, 1k〉 : w é aceita por T usando no máximo k células}, então

PB ⊆ NPB (trivial)

L ∈ NPB ⊆ PA 3 L

w ∈ L T T ′

w

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

p(|w|)

p(|w|)

w0

〈T ′′,wn, 1k〉A :

wn

“sim”

wn

wsk

... 1k

p′(|w|)

〈T ′,w, 1p
′(|w|)〉A :

Voltar

Prova: Existe um oráculo C tal que PC 6= NPC

Sejam
• X um oráculo qualquer
• {T0, T1, . . . , Tn, . . . } uma enumeração construtiva de PX tal que, para
todo x e k, Tk(x) para em no máximo |x|k + k passos

• Lx = {0n : ∃x(x ∈ X e |x| = n)} (Lx ∈ NPX)
Vamos definir um oráculo C (do tipo X) tal que LC /∈ PC

Obs. |x|k+k < 2|x|, i.e., a quantidade de strings de tamanho |x|
é maior do que qualquer polinômio em |x|.

Qualquer Tk ∈ PC calculando Tk(w) pode submeter no máximo |x|k + k

strings de tamanho |x| ao oráculo C,

NPC 6⊂ PC

Prova: Existe um oráculo C tal que PC 6= NPC (cont.)
Diagonalização em partes para definir C:

C(0) = ∅ C(i) = {w : w ∈ C e |w| = i} ‖W‖ = max{|w| : w ∈W}

Objetivo
• Se TC(i−1)

i (0i) = “sim”, então C(i) = ∅
• Se TC(i−1)

i (0i) = “não”, então

C(i) = {min{w : |w| > ‖C(i− 1)‖i−1 + i− 1 e 2|w| > |w|i + i}}

Suponha que LC ∈ PC. Então existe Ti que aceita LC. Logo,

TCi (0i) = “sim” ⇒ 0i ∈ C(i) = ∅

TCi (0i) = “não” ⇒ 0i /∈ C(i) 3 0i

O que é absurdo. Portanto,
LC /∈ PC

Voltar

Prova: Lema

Sejam C1 e C2 construtivamente enumeráveis. Então

∃T ij (i = 1, 2)(j ∈ N), T ij decide Lij ∈ Ci

Define-se G tal que G ∈ P e

∀j∃z ∈ Σ∗, z ∈ Li∆Lij e z ∈ G (†)

Fazendo-se L = (L1 ∩G) ∪ (L2 ∩ Ḡ),

(†)⇒ ∀j∃z ∈ Σ∗, z ∈ L∆Lij e z ∈ G

Prova: Lema (cont.)
Sejam

Z
j,n
1 p = menor palavra z com |z| > n e z ∈ L1∆L1j
Z
j,n
2 p = menor palavra z com |z| > n e z ∈ L2∆Lij

Rk(n) = max
i6n

{|Zi,nk |}+ 1

Então

L1 /∈ C1 ⇒ L1∆L
i
1 6= ∅, para todo i

C1 fechada por var. finita⇒ ∀j,n > j,∃z ∈ L1∆Lj1

Logo, R1 é total e computável. Sejam

R(n) > max{R1(n),R2(n)} (tempo construtível)

G = {x : R2n(0) 6 |x| 6 R2n+1(0) e n > 0}

Então G ∈ P

Prova: Lema (cont.)

Seja T uma máquina de Turing que conta o tempo de R. Então

T(x) para em exatamente R(|x|) passos

Algoritmo

1. Executar |x| passos de T(10) verificando se
R(0) > |x|⇒ R(0) > |x| > 0

2. Executar |x| passos de T(1R(0)) verificando se
R2(0) > |x|⇒ R2(0) > |x| > R(0)

...

n. Executar |x| passos de T(1Rn(0)) verificando se
Rn(0) > |x|⇒ Rn(0) > |x| > Rn−1(0)

Até achar o intervalo e, então, verificar se n é par ou impar

Voltar

Prova: ∃L unária NP-completa ⇒ P = NP

Se ∃L unária e NP-completa, então existe uma redução R polinomial tal que

x ∈ Sat⇔ R(x) ∈ L

Seja t ∈ {0, 1}∗ e seja A[t] a fórmula A avaliada parcialmente por t (ordem
nas letras),

A

A[0] A[1]

A[00] A[01] A[10] A[11]

FVV · · · FV · · · F V· · · V V· · ·

n = |A|

Prova: ∃L unária NP-completa ⇒ P = NP (cont.)
Construção de algoritmo poli para Sat

function verif1(A[t])
if |t| = n then

return A[t] 6≡ {}

else
return verif1(A[t0]) or verif1(A[t1])

end
end

function verif2(A[t])
if |t| = n then

return A[t] 6≡ {}

end
if Tab(hash(t)) then

return Tab(hash(t))
else

insere o resultado em Tab
return verif2(A[t0]) or verif2(A[t1])

end
end

Propriedades desejáveis do hashing

1. Ter domínio pequeno (polinomial)
2. Se hash(t) = hash(t ′) então A[t] ∈ Sat sse A[t ′] ∈ Sat

(1), (2) =⇒ hash(t) = R(A[t]).

Prova: ∃L unária NP-completa ⇒ P = NP (cont.)

Estimativa de complexidade de verif2

1. Se C é o número de chamadas recursivas então verif2 é O(C · p(n))
2. Existe uma sequência de avaliações parciais {t1, . . . , tk} tal que

◦ k > C/2n
◦ todas as chamadas associadas são recursivas
◦ nenhum ti é prefixo de nenhum tj (i 6= j)

Logo, se o valor máximo de k é p(n), então

p(n) > C/2n⇒ O(np2(n)) é a cota para verif2

Voltar

	Introdução
	Análise assintótica de algoritmos
	Funções de tempo construtivas e sua hierarquia
	Classes de complexidade e algumas relações
	P=NP?
	Oráculos
	Aplicações de diagonalização uniforme
	Hierarquias de Kleene e polinomial
	Circuitos booleanos
	Teorema de Razborov
	Colapso da hierarquia polinomial
	Apêndice

