

Reference number
ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004

INTERNATIONAL
STANDARD

ISO/IEC
14496-1

Third edition
2004-11-15

Information technology — Coding of
audio-visual objects —
Part 1:
Systems

Technologies de l'information — Codage des objets audiovisuels —

Partie 1: Systèmes

ISO/IEC 14496-1:2004(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2004
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2004 — All rights reserved

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved iii

Contents Page

Foreword.. vi
0 Introduction .. viii
0.1 Overview ... viii
0.2 Architecture .. viii
0.3 Terminal Model: Systems Decoder Model.. x
0.4 Multiplexing of Streams: The Delivery Layer ... x
0.5 Synchronization of Streams: The Sync Layer.. x
0.6 The Compression Layer ... x
0.7 Application Engine.. xii
0.8 Extensible MPEG-4 Textual Format (XMT) ... xii
1 Scope.. 1
2 Normative references ... 1
3 Additional reference ... 2
4 Terms and definitions... 2
4.1 Access Unit (AU) ... 2
4.2 Alpha Map .. 2
4.3 Atom ... 2
4.4 Audio-visual Object .. 2
4.5 Audio-visual Scene (AV Scene) ... 2
4.6 AVC Parameter Set ... 3
4.7 AVC Access Unit ... 3
4.8 AVC Parameter Set Access Unit.. 3
4.9 AVC Parameter Set Elementary Stream.. 3
4.10 AVC Video Elementary Stream .. 3
4.11 Binary Format for Scene (BIFS)... 3
4.12 Buffer Model .. 3
4.13 Byte Aligned .. 3
4.14 Chunk ... 3
4.15 Clock Reference .. 3
4.16 Composition .. 3
4.17 Composition Memory (CM) .. 3
4.18 Composition Time Stamp (CTS) .. 3
4.19 Composition Unit (CU).. 3
4.20 Compression Layer... 4
4.21 Container Atom ... 4
4.22 Control Point ... 4
4.23 Decoder .. 4
4.24 Decoding buffer (DB) .. 4
4.25 Decoder configuration.. 4
4.26 Decoding Time Stamp (DTS).. 4
4.27 Delivery Layer.. 4
4.28 Descriptor .. 4
4.29 DMIF Application Interface (DAI) ... 4
4.30 Elementary Stream (ES) ... 4
4.31 Elementary Stream Descriptor .. 4
4.32 Elementary Stream Interface (ESI) .. 4
4.33 M4Mux Channel (FMC).. 4
4.34 M4Mux Packet ... 5
4.35 M4Mux Stream... 5
4.36 M4Mux tool... 5

ISO/IEC 14496-1:2004(E)

iv © ISO/IEC 2004 — All rights reserved

4.37 Graphics Profile...5
4.38 Hint Track ...5
4.39 Hinter ..5
4.40 Inter...5
4.41 Interaction Stream...5
4.42 Intra...5
4.43 Initial Object Descriptor..5
4.44 Intellectual Property Identification (IPI)...5
4.45 Intellectual Property Management and Protection (IPMP) System ..5
4.46 IPMP Information...6
4.47 IPMP System ..6
4.48 IPMP Tool ...6
4.49 IPMP Tool Identifier ...6
4.50 IPMP Tool List..6
4.51 Media Node ..6
4.52 Media stream..6
4.53 Media time line...6
4.54 Movie Atom ..6
4.55 Movie Data Atom ...6
4.56 MP4 File ..6
4.57 Object Clock Reference (OCR)...6
4.58 Object Content Information (OCI) ..7
4.59 Object Descriptor (OD) ...7
4.60 Object Descriptor Command..7
4.61 Object Descriptor Profile ..7
4.62 Object Descriptor Stream ...7
4.63 Object Time Base (OTB) ...7
4.64 Parametric Audio Decoder ...7
4.65 Parametric Description ...7
4.66 Quality of Service (QoS) ...7
4.67 Random Access...7
4.68 Reference Point ...7
4.69 Rendering...7
4.70 Rendering Area..7
4.71 Sample..8
4.72 Sample Table ...8
4.73 Scene Description ...8
4.74 Scene Description Stream..8
4.75 Scene Graph Elements ...8
4.76 Scene Graph Profile ..8
4.77 Seekable ...8
4.78 SL-Packetized Stream (SPS) ..8
4.79 Stream object...8
4.80 Structured Audio ...8
4.81 Sync Layer (SL) ...8
4.82 Sync Layer Configuration...8
4.83 Sync Layer Packet (SL-Packet)..8
4.84 Syntactic Description Language (SDL) ...9
4.85 Systems Decoder Model (SDM) ...9
4.86 System Time Base (STB) ..9
4.87 Terminal..9
4.88 Time Base...9
4.89 Timing Model ...9
4.90 Time Stamp ..9
4.91 Track ...9
4.92 Interaction Stream...9
5 Abbreviations and Symbols ...9
6 Conventions...11

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved v

7 Streaming Framework .. 11
7.1 Systems Decoder Model... 11
7.2 Object Description Framework.. 17
7.3 Synchronization of Elementary Streams.. 72
7.4 Multiplexing of Elementary Streams ... 83
8 Syntactic Description Language ... 92
8.1 Introduction ... 92
8.2 Elementary Data Types... 92
8.3 Composite Data Types ... 95
8.4 Arithmetic and Logical Expressions... 99
8.5 Non-Parsable Variables .. 99
8.6 Syntactic Flow Control ... 99
8.7 Built-In Operators.. 101
8.8 Scoping Rules ... 101
9 Profiles ... 101
Annex A (informative) Time Base Reconstruction .. 103
A.1 Time Base Reconstruction... 103
A.2 Temporal aliasing and audio resampling ... 104
A.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough 105
Annex B (informative) Registration procedure.. 106
B.1 Procedure for the request of a Registration ID (RID) .. 106
B.2 Responsibilities of the Registration Authority... 106
B.3 Contact information for the Registration Authority .. 106
B.4 Responsibilities of Parties Requesting a RID .. 107
B.5 Appeal Procedure for Denied Applications.. 107
B.6 Registration Application Form... 107
Annex C (informative) The QoS Management Model for ISO/IEC 14496 Content 110
Annex D (informative) Conversion Between Time and Date Conventions .. 111
D.1 Conversion Between Time and Date Conventions.. 111
Annex E (informative) Graphical Representation of Object Descriptor and Sync Layer Syntax 113
E.1 Length encoding of descriptors and commands .. 113
E.2 Object Descriptor Stream and OD commands... 114
E.3 OCI stream ... 114
E.4 Object descriptor and its components ... 115
E.5 OCI Descriptors... 117
E.6 Sync layer configuration and syntax .. 120
Annex F (informative) Elementary Stream Interface ... 121
Annex G (informative) Upstream Walkthrough.. 123
G.1 Introduction ... 123
G.2 Configuration... 123
G.3 Content access procedure with DAI ... 124
G.4 Example.. 124
Annex H (informative) Scene and Object Description Carrousel .. 128
Annex I (normative) Usage of ITU-T Recommendation H.264 | ISO/IEC 14496-10 AVC 129
I.1 SL packet encapsulation of AVC Access Unit ... 129
I.2 Handling of Parameter Sets ... 129
I.3 Usage of ISO/IEC 14496-14 AVC File Format in MPEG-4 Systems .. 130
Annex J (informative) Patent statements ... 131
J.1 General ... 131
J.2 Patent Statements for Version 1.. 131
J.3 Patent Statements for Version 2.. 132
Bibliography ... 134

ISO/IEC 14496-1:2004(E)

vi © ISO/IEC 2004 — All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of a patent.

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained
from the companies listed in Annex J.

ISO/IEC 14496-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This third edition cancels and replaces the second edition (ISO/IEC 14496-1:2001). It also
incorporates the Amendments ISO/IEC 14496-1:2001/Amd.1:2001, ISO/IEC 14496-1:2001/Amd.3:2004,
ISO/IEC 14496-1:2001/Amd.4:2003 and ISO/IEC 14496-1:2001/Amd.7:2004, which have been technically
revised.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of
audio-visual objects:

— Part 1: Systems

— Part 2: Visual

— Part 3: Audio

— Part 4: Conformance testing

— Part 5: Reference software

— Part 6: Delivery Multimedia Integration Framework (DMIF)

— Part 7: Optimized reference software for coding of audio-visual objects

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved vii

— Part 8: Carriage of ISO/IEC 14496 contents over IP networks

— Part 9: Reference hardware description

— Part 10: Advanced Video Coding

— Part 11: Scene description and application engine

— Part 12: ISO base media file format

— Part 13: Intellectual Property Management and Protection (IPMP) extensions

— Part 14: MP4 file format

— Part 15: Advanced Video Coding (AVC) file format

— Part 16: Animation Framework eXtension (AFX)

— Part 17: Streaming text format

— Part 18: Font compression and streaming

— Part 19: Synthesized texture stream

ISO/IEC 14496-1:2004(E)

viii © ISO/IEC 2004 — All rights reserved

0 Introduction

0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification includes the
following elements:
1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects that can be

manifested audibly and/or visually (audio-visual objects) (specified in part 2, 3, 10, 11 and 16 of ISO/IEC 14496);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description, specified in part 11 of ISO/IEC 14496);

3. the coded representation of information related to the management of data streams (synchronization, identification,
description and association of stream content, specified in this part of ISO/IEC 14496);

4. a generic interface to the data stream delivery layer functionality (specified in part 6 of ISO/IEC 14496);

5. an application engine for programmatic control of the player: format, delivery of downloadable Java byte code as well
as its execution lifecycle and behavior through APIs (specified in part 11 of ISO/IEC 14496); and

6. a file format to contain the media information of an ISO/IEC 14496 presentation in a flexible, extensible format to
facilitate interchange, management, editing, and presentation of the media specified in part 12 (ISO File Format), part
14 (MP4 File Format) and part 15 (AVC File Format) of ISO/IEC 14496.

The overal operation of a system communicating audio-visual scenes can be paraphrased as follows:

At the sending terminal, the audio-visual scene information is compressed, supplemented with synchronization information
and passed to a delivery layer that multiplexes it into one or more coded binary streams that are transmitted or stored. At
the receiving terminal, these streams are demultiplexed and decompressed. The audio-visual objects are composed
according to the scene description and synchronization information and presented to the end user. The end user may
have the option to interact with this presentation. Interaction information can be processed locally or transmitted back to
the sending terminal. ISO/IEC 14496 defines the syntax and semantics of the bitstreams that convey such scene
information, as well as the details of their decoding processes.

This part of ISO/IEC 14496 specifies the following tools:
• a terminal model for time and buffer management;

• a coded representation of metadata for the identification, description and logical dependencies of the elementary
streams (object descriptors and other descriptors);

• a coded representation of descriptive audio-visual content information (object content information – OCI);

• an interface to intellectual property management and protection (IPMP) systems;

• a coded representation of synchronization information (sync layer – SL); and

• a multiplexed representation of individual elementary streams in a single stream (M4Mux).

These various elements are described functionally in this subclause and specified in the normative clauses that follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496 describes the means to create an interactive audio-visual
scene in terms of coded audio-visual information and associated scene description information. The entity that composes
and sends, or receives and presents such a coded representation of an interactive audio-visual scene is generically
referred to as an "audio-visual terminal" or just "terminal". This terminal may correspond to a standalone application or be
part of an application system.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved ix

Multiplexed Streams

Interactive Audiovisual
Scene

Elementary Streams

Composition and Rendering

Display and
User

Interaction

Transmission/Storage Medium

(RTP)
UDP

IP

H223
PSTN

DAB
Mux

Delivery
Layer

M4Mux M4Mux

DMIF Application Interface

SL SLSL SL ... Sync
Layer

Elementary Stream Interface

AV Object
data

Scene
Description
Information

Object
Descriptor

... Compression
Layer

SL

SL-Packetized Streams

(PES)
MPEG-2

TS

AAL2
ATM

Upstream
Information

SL

SL

M4Mux

...

Figure 1 — The ISO/IEC 14496 Terminal Architecture

The basic operations performed by such a receiver terminal are as follows. Information that allows access to content
complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6 of ISO/IEC 14496
defines the procedures for establishing such session contexts as well as the interface to the delivery layer that generically
abstracts the storage or transport medium. The initial set up information allows, in a recursive manner, to locate one or
more elementary streams that are part of the coded content representation. Some of these elementary streams may be
grouped together using the multiplexing tool described in ISO/IEC 14496-1.

Elementary streams contain the coded representation of either audio or visual data or scene description information or
user interaction data. Elementary streams may as well themselves convey information to identify streams, to describe
logical dependencies between streams, or to describe information related to the content of the streams. Each elementary
stream contains only one type of data.

ISO/IEC 14496-1:2004(E)

x © ISO/IEC 2004 — All rights reserved

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects are composed
according to the scene description information and presented by the terminal’s presentation device(s). All these processes
are synchronized according to the systems decoder model (SDM) using the synchronization information provided at the
synchronization layer.

These basic operations are depicted in Figure 1, and are described in more detail below.

0.3 Terminal Model: Systems Decoder Model

The systems decoder model provides an abstract view of the behavior of a terminal complying with ISO/IEC 14496-1. Its
purpose is to enable a sending terminal to predict how the receiving terminal will behave in terms of buffer management
and synchronization when reconstructing the audio-visual information that comprises the presentation. The systems
decoder model includes a systems timing model and a systems buffer model which are described briefly in the following
subclauses.

0.3.1 Timing Model

The timing model defines the mechanisms through which a receiving terminal establishes a notion of time that enables it
to process time-dependent events. This model also allows the receiving terminal to establish mechanisms to maintain
synchronization both across and within particular audio-visual objects as well as with user interaction events. In order to
facilitate these functions at the receiving terminal, the timing model requires that the transmitted data streams contain
implicit or explicit timing information. Two sets of timing information are defined in ISO/IEC 14496-1: clock references and
time stamps. The former convey the sending terminal’s time base to the receiving terminal, while the latter convey a notion
of relative time for specific events such as the desired decoding or composition time for portions of the encoded audio-
visual information.

0.3.2 Buffer Model

The buffer model enables the sending terminal to monitor and control the buffer resources that are needed to decode each
elementary stream in a presentation. The required buffer resources are conveyed to the receiving terminal by means of
descriptors at the beginning of the presentation. The terminal can then decide whether or not it is capable of handling this
particular presentation. The buffer model allows the sending terminal to specify when information may be removed from
these buffers and enables it to schedule data transmission so that the appropriate buffers at the receiving terminal do not
overflow or underflow.

0.4 Multiplexing of Streams: The Delivery Layer

The term delivery layer is used as a generic abstraction of any existing transport protocol stack that may be used to
transmit and/or store content complying with ISO/IEC 14496. The functionality of this layer is not within the scope of
ISO/IEC 14496-1, and only the interface to this layer is considered. This interface is the DMIF Application Interface (DAI)
specified in ISO/IEC 14496-6. The DAI defines not only an interface for the delivery of streaming data, but also for
signaling information required for session and channel set up as well as tear down. A wide variety of delivery mechanisms
exist below this interface, with some of them indicated in Figure 1. These mechanisms serve for transmission as well as
storage of streaming data, i.e., a file is considered to be a particular instance of a delivery layer. For applications where
the desired transport facility does not fully address the needs of a service according to the specifications in ISO/IEC 14496,
a simple multiplexing tool (M4Mux) with low delay and low overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary streams are conveyed as sync
layer-packetized (SL-packetized) streams at the DMIF Application Interface. This packetized representation additionally
provides timing and synchronization information, as well as fragmentation and random access information. The sync layer
(SL) extracts this timing information to enable synchronized decoding and, subsequently, composition of the elementary
stream data.

0.6 The Compression Layer

The compression layer receives data in its encoded format and performs the necessary operations to decode this data.
The decoded information is then used by the terminal’s composition, rendering and presentation subsystems.

0.6.1 Object Description Framework

The purpose of the object description framework is to identify and describe elementary streams and to associate them
appropriately to an audio-visual scene description. Object descriptors serve to gain access to ISO/IEC 14496 content.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved xi

Object content information and the interface to intellectual property management and protection systems are also part of
this framework.

An object descriptor is a collection of one or more elementary stream descriptors that provide the configuration and other
information for the streams that relate to either an audio-visual object or a scene description. Object descriptors are
themselves conveyed in elementary streams. Each object descriptor is assigned an identifier (object descriptor ID), which
is unique within a defined name scope. This identifier is used to associate audio-visual objects in the scene description
with a particular object descriptor, and thus the elementary streams related to that particular object.

Elementary stream descriptors include information about the source of the stream data, in form of a unique numeric
identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary stream descriptors
also include information about the encoding format, configuration information for the decoding process and the sync layer
packetization, as well as quality of service requirements for the transmission of the stream and intellectual property
identification. Dependencies between streams can also be signaled within the elementary stream descriptors. This
functionality may be used, for example, in scalable audio or visual object representations to indicate the logical
dependency of a stream containing enhancement information, to a stream containing the base information. It can also be
used to describe alternative representations for the same content (e.g. the same speech content in various languages).

0.6.1.1 Intellectual Property Management and Protection

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems in the form of monolithic
IPMP Systems or modular IPMP Tools. The IPMP interface consists of IPMP elementary streams and IPMP descriptors.
IPMP descriptors are carried as part of an object descriptor stream. IPMP elementary streams carry time variant IPMP
information that can be associated to multiple object descriptors.

The IPMP System, or IPMP Tools themselves are non-normative components that provides intellectual property
management and protection functions for the terminal. The IPMP Systems or Tools uses the information carried by the
IPMP elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal.

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a set of
tools that permits an ISO/IEC 14496 terminal to support IPMP functionality. This functionality is provided by two different
complementary technologies, supporting different levels of interoperability:
• The IPMP framework as defined in 7.2.3, consists of a normative interface that permits an ISO/IEC 14496 terminal to

host one or more IPMP Systems. The IPMP interface consists of IPMP elementary streams and IPMP descriptors.
IPMP descriptors are carried as part of an object descriptor stream. IPMP elementary streams carry time variant
IPMP information that can be associated to multiple object descriptors. The IPMP System itself is a non-normative
component that provides intellectual property management and protection functions for the terminal. The IPMP
System uses the information carried by the IPMP elementary streams and descriptors to make protected
ISO/IEC 14496 content available to the terminal.

• The IPMP framework extension, as specified in ISO/IEC 14496-13 allows, in addition to the functionality specified in
ISO/IEC 14496-1, a finer granularity of governance. ISO/IEC 14496-13 provides normative support for individual
IPMP components, referred to as IPMP Tools, to be normatively placed at identified points of control within the
terminal systems model. Additionally ISO/IEC 14496-13 provides normative support for secure communications to be
performed between IPMP Tools. ISO/IEC 14496-1 also specifies specific normative extensions at the Systems level
to support the IPMP functionality described in ISO/IEC 14496-13.

An application may choose not to use an IPMP System, thereby offering no management and protection features.

0.6.1.2 Object Content Information

Object content information (OCI) descriptors convey descriptive information about audio-visual objects. The main content
descriptors are: content classification descriptors, keyword descriptors, rating descriptors, language descriptors, textual
descriptors, and descriptors about the creation of the content. OCI descriptors can be included directly in the related object
descriptor or elementary stream descriptor or, if it is time variant, it may be carried in an elementary stream by itself. An
OCI stream is organized in a sequence of small, synchronized entities called events that contain a set of OCI descriptors.
OCI streams can be associated to multiple object descriptors.

0.6.2 Scene Description Streams

Scene description addresses the organization of audio-visual objects in a scene, in terms of both spatial and temporal
attributes. This information allows the composition and rendering of individual audio-visual objects after the respective
decoders have reconstructed the streaming data for them. For visual data, ISO/IEC 14496-11 does not mandate particular
composition algorithms. Hence, visual composition is implementation dependent. For audio data, the composition process
is defined in a normative manner in ISO/IEC 14496-11 and ISO/IEC 14496-3.

ISO/IEC 14496-1:2004(E)

xii © ISO/IEC 2004 — All rights reserved

The scene description is represented using a parametric approach (BIFS - Binary Format for Scenes). The description
consists of an encoded hierarchy (tree) of nodes with attributes and other information (including event sources and
targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas intermediate nodes group this
material to form audio-visual objects, and perform grouping, transformation, and other such operations on audio-visual
objects (scene description nodes). The scene description can evolve over time by using scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-11 provides
support for user and object interactions. Interactivity mechanisms are integrated with the scene description information, in
the form of linked event sources and targets (routes) as well as sensors (special nodes that can trigger events based on
specific conditions). These event sources and targets are part of scene description nodes, and thus allow close coupling of
dynamic and interactive behavior with the specific scene at hand. ISO/IEC 14496-11, however, does not specify a
particular user interface or a mechanism that maps user actions (e.g., keyboard key presses or mouse movements) to
such events.

Such an interactive environment may not need an upstream channel, but ISO/IEC 14496 also provides means for client-
server interactive sessions with the ability to set up upstream elementary streams and associate them to specific
downstream elementary streams.

0.6.3 Audio-visual Streams

The coded representation of audio and visual information are described in ISO/IEC 14496-3 (Audio) and ISO/IEC 14496-2
(Visual) and ISO/IEC 14496-10 (Advanced Video Coding) respectively. The reconstructed audio-visual data are made
available to the composition process for potential use during the scene rendering.

0.6.4 Upchannel Streams

Downchannel elementary streams may require upchannel information to be transmitted from the receiving terminal to the
sending terminal (e.g., to allow for client-server interactivity). Figure 1 indicates the flowpath for an elementary stream from
the receiving terminal to the sending terminal. The content of upchannel streams is specified in the same part of the
specification that defines the content of the downstream data. For example, upchannel control streams for video
downchannel elementary streams are defined in ISO/IEC 14496-2.

0.6.5 Interaction Streams

The coded representation of user interaction information is not in the scope of ISO/IEC 14496. But this information shall be
translated into scene modification and the modifications made available to the composition process for potential use
during the scene rendering.

0.7 Application Engine

The MPEG-J is a programmatic system (as opposed to a conventional parametric system) which specifies API(s) for
interoperation of MPEG-4 media players with Java code. By combining MPEG-4 media and safe executable code, content
creators may embed complex control and data processing mechanisms with their media data to intelligently manage the
operation of the audio-visual session. The parametric MPEG-4 System forms the Presentation Engine while the MPEG-J
subsystem controlling the Presentation Engine forms the Application Engine.

The Java application is delivered as a separate elementary stream to the MPEG-4 terminal. There it will be directed to the
MPEG-J run time environment, from where the MPEG-J program will have access to the various components and required
data of the MPEG-4 player to control it.

In addition to the basic packages of the language (java.lang, java.io, java.util) a few categories of APIs have been defined
for different scopes. For the Scene graph API the objective is to provide access to the scene graph: to inspect the graph,
to alter nodes and their fields, and to add and remove nodes within the graph. The Resource API is used for regulation of
performance: it provides a centralized facility for managing resources. This is used when the program execution is
contingent upon the terminal configuration and its capabilities, both static (that do not change during execution) and
dynamic. Decoder API allows the control of the decoders that are present in the terminal. The Net API provides a way to
interact with the network, being compliant to the MPEG-4 DMIF Application Interface. Complex applications and enhanced
interactivity are possible with these basic packages. The architecture of MPEG-J is presented in more detail in
ISO/IEC 14496-11.

0.8 Extensible MPEG-4 Textual Format (XMT)

The Extensible MPEG-4 Textual (XMT) format is a textual representation of the multimedia content described in
ISO/IEC 14496 using the Extensible Markup Language (XML). XMT is designed to facilitate the creation and maintenance
of MPEG-4 multimedia content, whether by human authors or by automated machine programs. XMT is specified in
ISO/IEC 14496-11.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved xiii

The textual representation of MPEG-4 content has high-level abstractions, XMT-O, that allow authors to exchange their
content easily with other authors or authoring tools, while at the same time preserving semantic intent. XMT also has low-
level textual representations, XMT-A, covering the full scope and function of MPEG-4. The high-level XMT-O is designed
to facilitate interoperability with the Synchronized Multimedia Integration Language (SMIL) 2.0, a recommendation from
the W3C consortium, and also with Extensible 3D specification, X3D, developed by the Web3D consortium as the next
generation of Virtual Reality Modeling Language (VRML).

The XMT language has grammars that are specified using the W3C XML Schema language. The grammars contain rules
for element placement and attribute values, etc. These rules for XMT, defined using the Schema language, follow the
binary coding rules defined in ISO/IEC 14496-11 and help ensure that the textual representation can be coded into correct
binary according to ISO/IEC 14496-11 coding rules.

All constructs in the ISO/IEC 14496 specification have their parallel in the XMT textual format. For the Visual and Audio
parts, XMT provides a means to reference external media streams of either pre-encoded or raw audiovisual binary content.
While XMT does not contain a textual format for audiovisual media, it does contain hints in a textual format that allow an
XMT tool to encode and embed the audiovisual media into a complete MPEG-4 presentation.

INTERNATIONAL STANDARD ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 1

Information technology — Coding of audio-visual objects —

Part 1:
Systems

1 Scope

This part of ISO/IEC 14496 specifies system level functionalities for the communication of interactive audio-visual scenes,
i.e., the coded representation of information related to the management of data streams (synchronization, identification,
description and association of stream content).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code

ISO 3166-1:1997, Codes for the representation of names of countries and their subdivisions — Part 1: Country codes

ISO 9613-1:1993, Acoustics — Attenuation of sound during propagation outdoors — Part 1: Calculation of the absorption
of sound by the atmosphere

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1:
Architecture and Basic Multilingual Plane

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for digital storage
media at up to about 1,5 Mbit/s — Part 2: Video

ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for digital storage
media at up to about 1,5 Mbit/s — Part 3: Audio

ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio information —
Part 3: Audio

ISO/IEC 13818-7:2003, Information technology — Generic coding of moving pictures and associated audio information —
Part 7: Advanced Audio Coding (AAC)

ISO/IEC 14496-2:2004, Information technology — Coding of audio-visual objects — Part 2: Visual

ISO/IEC 14496-10:2003, Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding

ISO/IEC 14496-15:2004, Information technology — Coding of audio-visual objects — Part 15: Advanced Video Coding
(AVC) file format

ISO/IEC 14772-1:1997, Information technology — Computer graphics and image processing — The Virtual Reality
Modeling Language — Part 1: Functional specification and UTF-8 encoding

ISO/IEC 16262: 2002, Information technology — ECMAScript language specification

ITU-T Rec. H.262 (2000) | ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures and
associated audio information — Part 2: Video

ITU-T Rec. T.81 (1992) | ISO/IEC 10918-1:1994, Information technology — Digital compression and coding of continuous-
tone still images — Part 1: Requirements and guidelines

ISO/IEC 14496-1:2004(E)

2 © ISO/IEC 2004 — All rights reserved

IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic

Addison-Wesley:September 1996, The Java Language Specification, by James Gosling, Bill Joy and Guy Steele,
ISBN 0-201-63451-1

Addison-Wesley:September 1996, The Java Virtual Machine Specification, by T. Lindholm and F. Yellin,
ISBN 0-201-63452-X

Addison-Wesley:July 1998, Java Class Libraries Vol. 1 The Java Class Libraries, Second Edition Volume 1, by Patrick
Chan, Rosanna Lee and Douglas Kramer, ISBN 0-201-31002-3

Addison-Wesley:July 1998, Java Class Libraries Vol. 2 The Java Class Libraries, Second Edition Volume 2, by Patrick
Chan and Rosanna Lee, ISBN 0-201-31003-1

Addison-Wesley, May 1996, Java API, The Java Application Programming Interface, Volume 1: Core Packages, by
J. Gosling, F. Yellin and the Java Team, ISBN 0-201-63453-8

DAVIC 1.4.1 specification, Part 9: Information Representation

ANSI/SMPTE 291M-1996, Television — Ancillary Data Packet and Space Formatting

SMPTE 315M -1999, Television — Camera Positioning Information Conveyed by Ancillary Data Packets

W3C Recommendation: August 2001 — Synchronized Multimedia Integration Language (SMIL 2.0),
http://www.w3.org/TR/smil20/

W3C Recommendation: May 2001 — XML Schema, http://www.w3.org/TR/xmlschema-0/

3 Additional reference

ISO/IEC 13522-6:1998, Information technology — Coding of multimedia and hypermedia information — Part 6: Support for
enhanced interactive applications. This reference contains the full normative references to Java APIs and the Java Virtual
Machine as described in the normative references above.

4 Terms and definitions

For the purposes of this part of ISO/IEC 14496, the following terms and definitions apply.

4.1
Access Unit (AU)
An individually accessible portion of data within an elementary stream. An access unit is the smallest data entity to which
timing information can be attributed.

4.2
Alpha Map
The representation of the transparency parameters associated with a texture map.

4.3
Atom
An object-oriented building block defined by a unique type identifier and length.

4.4
Audio-visual Object
A representation of a natural or synthetic object that has an audio and/or visual manifestation. The representation
corresponds to a node or a group of nodes in the BIFS scene description. Each audio-visual object is associated with zero
or more elementary streams using one or more object descriptors.

4.5
Audio-visual Scene (AV Scene)
A set of audio-visual objects together with scene description information that defines their spatial and temporal attributes
including behaviors resulting from object and user interactions.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 3

4.6
AVC Parameter Set
A parameter set is either a sequence parameter set or a picture parameter set. This term is used to refer to both types of
parameter sets.

4.7
AVC Access Unit
An access unit made up of NAL Units as defined in ITU-T Recommendation H.264 | ISO/IEC 14496-10 with the structure
defined in subclause 5.2.3 of ISO/IEC 14496-15.

4.8
AVC Parameter Set Access Unit
An Access Unit made up only of sequence parameter set NAL units or picture parameter set NAL units having same
timestamps to be applied.

4.9
AVC Parameter Set Elementary Stream
An elementary stream containing made up only of AVC parameter set access units.

4.10
AVC Video Elementary Stream
An elementary stream containing access units made up of NAL units for coded picture data.

4.11
Binary Format for Scene (BIFS)
A coded representation of a parametric scene description format.

4.12
Buffer Model
A model that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are needed to
decode a presentation.

4.13
Byte Aligned
A position in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream.

4.14
Chunk
A contiguous set of samples stored for one stream.

4.15
Clock Reference
A special time stamp that conveys a reading of a time base.

4.16
Composition
The process of applying scene description information in order to identify the spatio-temporal attributes and hierarchies of
audio-visual objects.

4.17
Composition Memory (CM)
A random access memory that contains composition units.

4.18
Composition Time Stamp (CTS)
An indication of the nominal composition time of a composition unit.

4.19
Composition Unit (CU)
An individually accessible portion of the output that a decoder produces from access units.

ISO/IEC 14496-1:2004(E)

4 © ISO/IEC 2004 — All rights reserved

4.20
Compression Layer
The layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded representation
of an elementary stream and its decoded representation. It incorporates the decoders.

4.21
Container Atom
An atom whose sole purpose is to contain and group a set of related atoms.

4.22
Control Point
A point on a given elementary stream in a Terminal where IPMP Processing on stream data shall be carried out.

4.23
Decoder
An entity that translates between the coded representation of an elementary stream and its decoded representation.

4.24
Decoding buffer (DB)
A buffer at the input of a decoder that contains access units.

4.25
Decoder configuration
The configuration of a decoder for processing its elementary stream data by using information contained in its elementary
stream descriptor.

4.26
Decoding Time Stamp (DTS)
An indication of the nominal decoding time of an access unit.

4.27
Delivery Layer
A generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a number of multiplexed
elementary streams or M4Mux streams.

4.28
Descriptor
A data structure that is used to describe particular aspects of an elementary stream or a coded audio-visual object.

4.29
DMIF Application Interface (DAI)
An interface specified in ISO/IEC 14496-6. It is used here to model the exchange of SL-packetized stream data and
associated control information between the sync layer and the delivery layer.

4.30
Elementary Stream (ES)
A consecutive flow of mono-media data from a single source entity to a single destination entity on the compression layer.

4.31
Elementary Stream Descriptor
A structure contained in object descriptors that describes the encoding format, initialization information, sync layer
configuration, and other descriptive information about the content carried in an elementary stream.

4.32
Elementary Stream Interface (ESI)
A conceptual interface modeling the exchange of elementary stream data and associated control information between the
compression layer and the sync layer.

4.33
M4Mux Channel (FMC)
A label to differentiate between data belonging to different constituent streams within one M4Mux Stream. A sequence of
data in one M4Mux channel within a M4Mux stream corresponds to one single SL-packetized stream.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 5

4.34
M4Mux Packet
The smallest data entity managed by the M4Mux tool. It consists of a header and a payload.

4.35
M4Mux Stream
A sequence of M4Mux Packets with data from one or more SL-packetized streams that are each identified by their own
M4Mux channel.

4.36
M4Mux tool
A tool that allows the interleaving of data from multiple data streams.

4.37
Graphics Profile
A profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene description
stream. Note that BIFS comprises both graphical and scene description elements.

4.38
Hint Track
A special track which contains instructions for packaging one or more tracks into a TransMux. It does not contain media
data (an elementary stream).

4.39
Hinter
A tool that is run on a completed file to add one or more hint tracks to the file to facilitate streaming.

4.40
Inter
A mode for coding parameters that uses previously coded parameters to construct a prediction.

4.41
Interaction Stream
An elementary stream that conveys user interaction information.

4.42
Intra
A mode for coding parameters that does not make reference to previously coded parameters to perform the encoding.

4.43
Initial Object Descriptor
A special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded according
to ISO/IEC 14496. It conveys profile and level information to describe the complexity of the content.

4.44
Intellectual Property Identification (IPI)
A unique identification of one or more elementary streams corresponding to parts of one or more audio-visual objects.

4.45
Intellectual Property Management and Protection (IPMP) System
A generic term for mechanisms and tools to manage and protect intellectual property. The interface to such systems is
defined as well as:

• The provision for the identification of IPMP Tools either through the use of a registration authority or through the
use of a functional description of the IPMP Tools’ capabilities in a parametric fashion.

• Controlling the time of instantiation of IPMP Tools either by the inclusion of references to the required IPMP
Tools or at the request of already instantiated IPMP Tools.

• Providing secure messaging between IPMP Tools and the Terminal and between IPMP Tools and the User.
• Notification of the instantiation of IPMP Tools to IPMP Tools requesting such notification.
• Interaction between IPMP Tools, and/or the Terminal and the User.
• The carriage of IPMP Tools within the bitstream.

ISO/IEC 14496-1:2004(E)

6 © ISO/IEC 2004 — All rights reserved

4.46
IPMP Information
Information directed to a given IPMP Tool to enable, assist or facilitate its operation.

4.47
IPMP System
A monolithic IPMP protection scheme which requires implementation dependant access to protected streams at required
Control Points and must provide any intra-communication within an IPMP System on an implementation basis.

In this specification the use of the term “IPMP System” is used in some cases to indicate either an actual IPMP System or
a combination of IPMP Tools whose combination provides the functionality of an IPMP System. In cases where the
distinction is important the proper respective terms are used.

4.48
IPMP Tool
IPMP tools are modules that perform (one or more) IPMP functions such as authentication, decryption, watermarking, etc.
Conceptually the use of one or more IPMP Tools is combined to perform the functionality of an IPMP System. IPMP Tools,
as opposed to IPMP Systems, are normatively identified as to which control points they function at as well as are provided
normative methods for secure communications both within as well as outside of a given IPMP Tools comprised functional
“IPMP System”. An additional difference between IPMP Tools and IPMP Systems is that IPMP Tools, or a combination
thereof, may be used for the protection of Object streams.

4.49
IPMP Tool Identifier
This refers to the IPMP Tool ID. It identifies a Tool in an unambiguous way, at the presentation level or at a universal level.
Two different identifiers are provided to support the differentiation between the use of IPMP Systems and IPMP Tools.

4.50
IPMP Tool List
The IPMP Tool List identifies, and enables selection of, the IPMP Tools required to process the Content.

4.51
Media Node
The following list of time dependent nodes that refers to a media stream through a URL field: AnimationStream,
AudioBuffer, AudioClip, AudioSource, Inline, MovieTexture.

4.52
Media stream
One or more elementary streams whose ES descriptors are aggregated in one object descriptor and that are jointly
decoded to form a representation of an AV object.

4.53
Media time line
A time line expressing normal play back time of a media stream.

4.54
Movie Atom
A container atom whose sub-atoms define the meta-data for a presentation (‘moov’).

4.55
Movie Data Atom
A container atom which can hold the actual media data for a presentation (‘mdat’).

4.56
MP4 File
The name of the file format described in this specification.

4.57
Object Clock Reference (OCR)
A clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 7

4.58
Object Content Information (OCI)
Additional information about content conveyed through one or more elementary streams. It is either aggregated to
individual elementary stream descriptors or is itself conveyed as an elementary stream.

4.59
Object Descriptor (OD)
A descriptor that aggregates one or more elementary streams by means of their elementary stream descriptors and
defines their logical dependencies.

4.60
Object Descriptor Command
A command that identifies the action to be taken on a list of object descriptors or object descriptor IDs, e.g., update or
remove.

4.61
Object Descriptor Profile
A profile that specifies the configurations of the object descriptor tool and the sync layer tool that are allowed.

4.62
Object Descriptor Stream
An elementary stream that conveys object descriptors encapsulated in object descriptor commands.

4.63
Object Time Base (OTB)
A time base valid for a given elementary stream, and hence for its decoder. The OTB is conveyed to the decoder via
object clock references. All time stamps relating to this object’s decoding process refer to this time base.

4.64
Parametric Audio Decoder
A set of tools for representing and decoding speech signals coded at bit rates between 6 Kbps and 16 Kbps, according to
the specifications in ISO/IEC 14496-3.

4.65
Parametric Description
Parametrically described tools shall be defined by an SDL declaration that governs a given description, the parametric
configuration and other interface message(s) that drive the tool and the behaviour defined for fulfilment of such a
description.

4.66
Quality of Service (QoS)
The performance that an elementary stream requests from the delivery channel through which it is transported. QoS is
characterized by a set of parameters (e.g., bit rate, delay jitter, bit error rate, etc.).

4.67
Random Access
The process of beginning to read and decode a coded representation at an arbitrary point within the elementary stream.

4.68
Reference Point
A location in the data or control flow of a system that has some defined characteristics.

4.69
Rendering
The action of transforming a scene description and its constituent audio-visual objects from a common representation
space to a specific presentation device (i.e., speakers and a viewing window).

4.70
Rendering Area
The portion of the display device’s screen into which the scene description and its constituent audio-visual objects are to
be rendered.

ISO/IEC 14496-1:2004(E)

8 © ISO/IEC 2004 — All rights reserved

4.71
Sample
An access unit for an elementary stream. In hint tracks, a sample defines the formation of one or more TransMux packets.

4.72
Sample Table
A packed directory for the timing and physical layout of the samples in a track.

4.73
Scene Description
Information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior resulting from
object and user interactions. The scene description makes reference to elementary streams with audio-visual data by
means of pointers to object descriptors.

4.74
Scene Description Stream
An elementary stream that conveys scene description information.

4.75
Scene Graph Elements
The elements of the BIFS tool that relate only to the structure of the audio-visual scene (spatio-temporal positioning of
audio-visual objects as well as their behavior resulting from object and user interactions) excluding the audio, visual and
graphics nodes as specified in 14496-11.

4.76
Scene Graph Profile
A profile that defines the permissible set of scene graph elements of the BIFS tool that may be used in a scene description
stream. Note that BIFS comprises both graphical and scene description elements.

4.77
Seekable
A media stream is seekable if it is possible to play back the stream from any position.

4.78
SL-Packetized Stream (SPS)
A sequence of sync layer packets that encapsulate one elementary stream.

4.79
Stream object
A media stream or a segment thereof. A stream object is referenced through a URL field in the scene in the form “OD:n” or
“OD:n#<segmentName>”.

4.80
Structured Audio
A method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3.

4.81
Sync Layer (SL)
A layer to adapt elementary stream data for communication across the DMIF Application Interface, providing timing and
synchronization information, as well as fragmentation and random access information. The sync layer syntax is
configurable and can be configured to be empty.

4.82
Sync Layer Configuration
A configuration of the sync layer syntax for a particular elementary stream using information contained in its elementary
stream descriptor.

4.83
Sync Layer Packet (SL-Packet)
The smallest data entity managed by the sync layer consisting of a configurable header and a payload. The payload may
consist of one complete access unit or a partial access unit.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 9

4.84
Syntactic Description Language (SDL)
A language defined by clause 8 that allows the description of a bitstream’s syntax.

4.85
Systems Decoder Model (SDM)
A model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496. It consists of the buffer
model and the timing model.

4.86
System Time Base (STB)
The time base of the terminal. Its resolution is implementation-dependent. All operations in the terminal are performed
according to this time base.

4.87
Terminal
A system that sends, or receives and presents the coded representation of an interactive audio-visual scene as defined by
ISO/IEC 14496-11. It can be a standalone system, or part of an application system complying with ISO/IEC 14496.

4.88
Time Base
The notion of a clock; it is equivalent to a counter that is periodically incremented.

4.89
Timing Model
A model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly) in the
coded representation of information, and how it can be recovered at the receiving terminal.

4.90
Time Stamp
An indication of a particular time instant relative to a time base.

4.91
Track
A collection of related samples in an MP4 file. For media data, a track corresponds to an elementary stream. For hint
tracks, a track corresponds to a TransMuxchannel

4.92
Interaction Stream
An elementary stream that conveys user interaction information.

5 Abbreviations and Symbols

AU Access Unit

AV Audio-visual

AVC Advanced Video Coding, ITU-T Recommendation H.264 | ISO/IEC 14496-10
BIFS Binary Format for Scene

CM Composition Memory

CTS Composition Time Stamp
CU Composition Unit

DAI DMIF Application Interface (see ISO/IEC 14496-6)

DB Decoding Buffer
DTS Decoding Time Stamp

ES Elementary Stream

ESI Elementary Stream Interface

ISO/IEC 14496-1:2004(E)

10 © ISO/IEC 2004 — All rights reserved

ESID Elementary Stream Identifier

FAP Facial Animation Parameters

FAPU FAP Units
FDP Facial Definition Parameters

FIG FAP Interpolation Graph

FIT FAP Interpolation Table
FMC M4Mux Channel

FMOD The floating point modulo (remainder) operator which returns the remainder of x/y such that:

Fmod(x/y) = x – k*y, where k is an integer,
sgn(fmod(x/y)) = sgn(x), and
abs(fmod(x/y)) < abs(y)

HRD Hypothetical Reference Decoder
IDR Instantaneous Decoding Refresh

IP Intellectual Property

IPI Intellectual Property Identification
IPMP Intellectual Property Management and Protection

NAL Network Abstraction Layer

NCT Node Coding Tables
NDT Node Data Type

NINT Nearest INTeger value

OCI Object Content Information
OCR Object Clock Reference

OD Object Descriptor

ODID Object Descriptor Identifier
OTB Object Time Base

PLL Phase Locked Loop

QoS Quality of Service
SAOL Structured Audio Orchestra Language

SASL Structured Audio Score Language

SDL Syntactic Description Language
SDM Systems Decoder Model

SEI Supplementary Enhancement Information

SL Synchronization Layer
SL-Packet Synchronization Layer Packet

SPS SL-Packetized Stream

STB System Time Base
TTS Text-To-Speech

URL Universal Resource Locator

VOP Video Object Plane
VRML Virtual Reality Modeling Language

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 11

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the normative parts
of ISO/IEC 14496 a syntactic description language is used. This language allows the specification of the mapping of the
various parameters in a binary format as well as how they are placed in a serialized bitstream. The definition of the
language is provided in Clause 8 of this specification.

7 Streaming Framework

7.1 Systems Decoder Model

7.1.1 Introduction

The purpose of the systems decoder model (SDM) is to provide an abstract view of the behavior of a terminal complying
with ISO/IEC 14496. It may be used by the sender to predict how the receiving terminal will behave in terms of buffer
management and synchronization when decoding data received in the form of elementary streams. The systems decoder
model includes a timing model and a buffer model.

The systems decoder model specifies:

1. the interface for accessing demultiplexed data streams (DMIF Application Interface),

2. decoding buffers for coded data for each elementary stream,

3. the behavior of elementary stream decoders,

4. composition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the compositor.

These elements are depicted in Figure 2. Each elementary stream is attached to one single decoding buffer. More than
one elementary stream may be connected to a single decoder (e.g., in a decoder of a scaleable audio-visual object).

Decoding
Buffer DB

1
Decoder

(encapsulates
Demultiplexer)

DMIF Appli-
cation Interface

Decoding
Buffer DBn

Decoding
Buffer DB

2 Decoder
Memory

2

Compositor

Elementary Stream Interface

Decoding
Buffer DB

3

Memory
1

Composition

Composition

Memory
n

CompositionDecoder

1

2

n

Figure 2 — Systems Decoder Model

7.1.2 Concepts of the systems decoder model

This subclause defines the concepts necessary for the specification of the timing and buffering model. The sequence of
definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

ISO/IEC 14496-1:2004(E)

12 © ISO/IEC 2004 — All rights reserved

7.1.2.1 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the demultiplexer and
provides access to streaming data that is consumed by the decoding buffers. The streaming data received through the
DAI consists of SL-packetized streams. The required properties of the DAI are described in 7.3.3. The DAI semantics are
fully specified in ISO/IEC 14496-6.

7.1.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified in 7.3.2, that
encapsulate a single elementary stream. The packets contain elementary stream data partitioned in access units as well
as side information, e.g., for timing and access unit labeling. SPS data payload enters the decoding buffers, i.e., the side
information is removed at the input to the decoding buffers.

7.1.2.3 Access Units (AU)

Elementary stream data is partitioned into access units. The delineation of an access unit is completely determined by the
entity that generates the elementary stream (e.g., the compression layer). An access unit is the smallest data entity to
which timing information can be attributed. Two access units from the same elementary stream shall never refer to the
same decoding or composition time. Any further partitioning of the data in an elementary stream is not visible for the
purposes of the systems decoder model. Access units are conveyed by SL-packetized streams and are received by the
decoding buffers. The decoders consume access units with the necessary side information (e.g., time stamps) from the
decoding buffers.

NOTE — An ISO/IEC 14496-1 compliant terminal implementation is not required to process each incoming access unit as
a whole. It is furthermore possible to split an access unit into several fragments for transmission as specified in subclause
7.3. This allows the sending terminal to dispatch partial AUs immediately as they are generated during the encoding
process. Such partial AUs may have significance for improved error resilience.

7.1.2.4 Decoding Buffer (DB)

The decoding buffer is a buffer at the input of an elementary stream decoder in the receiving terminal that receives and
stores access units. The systems buffer model enables the sending terminal to monitor the decoding buffer resources that
are used during a presentation.

7.1.2.5 Elementary Streams (ES)

Streaming data received at the output of a decoding buffer, independent of its content, is considered as an elementary
stream for the purpose of ISO/IEC 14496. The elementary streams are produced and consumed by the compression layer
entities (encoders and decoders, respectively). ISO/IEC 14496 assumes that the integrity of an elementary stream is
preserved from end to end.

7.1.2.6 Elementary Stream Interface (ESI)

The elementary stream interface is a concept that models the exchange of elementary stream data and associated control
information between the compression layer and the sync layer. It is explained further in clause 7.3.

7.1.2.7 Decoder

For the purposes of this model, the decoder extracts access units from the decoding buffer at precisely defined points in
time and places composition units, the results of the decoding processes, in the composition memory. A decoder may be
attached to several decoding buffers.

7.1.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer number of
composition units. In case of multiple elementary streams attached to a single decoder (scaleable coding), each
composition unit is derived from access units from one or more of these streams. Composition units reside in composition
memory.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 13

7.1.2.9 Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this memory is not
normatively specified.

7.1.2.10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g. composes and
presents them, in the case of audio-visual data) or skips them. The compositor is not specified in ISO/IEC 14496-1, as the
details of this operation are not relevant within the context of the systems decoder model. Subclause 7.1.3.5 defines which
composition units are available to the compositor at any instant of time.

7.1.3 Timing Model Specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by one or more
elementary streams. The concept of a clock with its associated clock references is used to convey the notion of time to a
receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving terminal consumes
the access units in the decoding buffers or may access the composition units resident in the composition memory. The
time stamps are therefore associated with access units and composition units. The semantics of the timing model are
defined in the subsequent clauses. The syntax for conveying timing information is specified in 7.3.2.

NOTE — This timing model is designed for rate-controlled (“push”) applications.

7.1.3.1 System Time Base (STB)

The system time base (STB) defines the terminal’s notion of time. The resolution of the STB is implementation dependent.
All actions of the terminal are scheduled according to this time base for the purpose of this timing model.

NOTE — This does not imply that all terminals compliant with ISO/IEC 14496 operate on one single STB.

7.1.3.2 Object Time Base (OTB)

The object time base (OTB) defines the notion of time for a given data stream. The resolution of this OTB can be selected
as required by the application or as defined by a profile. All time stamps that the sending terminal inserts in a coded data
stream refer to this time base. The OTB of a data stream is known at the receiving terminal either by means of object clock
reference information inserted in the stream or by an indication that its time base is slaved to a time base conveyed with
another stream, as specified in 7.3.2.3.

NOTE 1 — Elementary streams may be created for the sole purpose of conveying time base information.

NOTE 2 — The receiving terminal’s system time base need not be locked to any of the available object time bases.

7.1.3.3 Object Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary stream
decoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal generates the object
clock reference time stamp. OCR time stamps are placed in the SL packet header as described in 7.3.2.4. The receiving
terminal shall evaluate the OCR when its last bit is extracted at the input of the decoding buffer.

7.1.3.4 Decoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the decoding buffer
for decoding. The AU is not guaranteed to be available in the decoding buffer either before or after this time. Decoding is
assumed to occur instantaneously when the instant of time indicated by the DTS is reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access units is
indicated in the setup of the elementary stream (see 7.3.2.3). Otherwise a decoding time stamp (DTS) whose syntax is
defined in 7.3.2.4 conveys this point in time.

ISO/IEC 14496-1:2004(E)

14 © ISO/IEC 2004 — All rights reserved

A decoding time stamp shall only be conveyed for an access unit that carries a composition time stamp as well, and only if
the DTS and CTS values are different. Presence of both time stamps in an AU may indicate a reversal between coding
order and composition order.

7.1.3.5 Composition Time Stamp (CTS)

Each composition unit has an associated nominal composition time, the time at which it must be available in the
composition memory for composition. The CU is not guaranteed to be available in the composition memory for
composition before this time. Since the SDM assumes an instantaneous decoding process, the CU is available to the
decoder, at that instant in time corresponding to the DTS of the corresponding AU, for further use (e.g. in prediction
processes).

This instant in time is implicitly known, if the (constant) temporal distance between successive composition units is
indicated in the setup of the elementary stream. Otherwise a composition time stamp (CTS) whose syntax is defined in
7.3.2.4 conveys this instant in time.

The current CU is instantaneously accessible by the compositor anytime between its composition time and the
composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at the
end of the lifetime of its elementary stream (i.e., when its elementary stream descriptor is removed).

7.1.3.6 Occurrence and Precision of Timing Information in Elementary Streams

The frequency at which DTS, CTS and OCR values are to be inserted in the bitstream as well as the precision, jitter and
drift are application and profile dependent. Some usage considerations can be found in 7.3.2.7.

7.1.3.7 Time Stamps for Dependent Elementary Streams

An audio-visual object may refer to multiple elementary streams that constitute a scaleable content representation (see
7.2.7.1.5). Such a set of elementary streams shall adhere to a single object time base. Temporally co-located access units
for such elementary streams are then identified by identical DTS or CTS values.

EXAMPLE

The example in Figure 3 illustrates the arrival of two access units at the Systems Decoder. Due to the constant delay
assumption of the model (see 7.1.4.2 below), the arrival times correspond to the instants in time when the sending
terminal has sent the respective AUs. The sending terminal must select this instant in time so that the Decoding Buffer at
the receiving terminal never overflows or underflows. At the receiving terminal, an AU is instantaneously decoded, at that
instant in time corresponding to its DTS, and the resulting CU(s) are placed in the composition memory and remain there
until the subsequent CU(s) arrive or the associated object descriptor is removed.

Composition
Memory

Decoding
Buffer

AU0

AU1

Arrival(AU0)
Arrival(AU1)

DTS (AU0)
DTS (AU1)

CTS (CU0) CTS (CU1)
= available for
 composition

...................

...................CU0

CU1

Figure 3 — Composition unit availability

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 15

7.1.4 Buffer Model Specification

7.1.4.1 Elementary Decoder Model

Figure 4 indicates one branch of the systems decoder model (Figure 2). This simplified model is used to specify the buffer
model. It treats each elementary stream separately and therefore, associates a composition memory with only one
decoder. The legend following Figure 4 elaborates on the symbols used in this figure.

CUAUDecoding
Buffer DB Decoder

Composition
Memory CM Compositor

Figure 4 — Flow diagram for the systems decoder model

Legend:

DB Decoding buffer for the elementary stream.

CM Composition memory for the elementary stream.

AU The current access unit input to the decoder.

CU The current composition unit input to the composition memory. CU results from decoding AU. There may be
several composition units resulting from decoding one access unit.

7.1.4.2 Assumptions

7.1.4.2.1 Constant end-to-end delay

Data transmitted in real time have a timing model in which the end-to-end delay from the encoder input at the sending
terminal, to the decoder output at the receiving terminal, is constant. This delay is equal to the sum of the delay due to the
encoding process, subsequent buffering, multiplexing at the sending terminal, the delay due to the delivery layers and the
delay due to the demultiplexing, decoder buffering and decoding processes at the receiving terminal.

Note that the receiving terminal is free to add a temporal offset (delay) to the absolute values of all time stamps if it can
cope with the additional buffering needed. However, the temporal difference between two time stamps (that determines
the temporal distance between the associated AUs or CUs) has to be preserved for real-time performance.

NOTE — Two elementary streams that adhere to different time bases may be synchronized tightly in case of constant
end-to-end delay as assumed by this model. If an application cannot implement this model assumption, such tight
synchronization may not be achievable. Tolerances for the constant end-to-end delay assumption need to be defined
through the profile and level mechanism.

7.1.4.2.2 Demultiplexer

The end-to-end delay between multiplexer output, at the sending terminal, and demultiplexer input, at the receiving
terminal, is constant.

7.1.4.2.3 Decoding Buffer

The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as specified in
7.2.6.6.

The size of the decoding buffer is measured in bytes.

ISO/IEC 14496-1:2004(E)

16 © ISO/IEC 2004 — All rights reserved

The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream while data is available
and with a zero rate otherwise. The maximum bit rate is conveyed by the sending terminal as a part of the decoder
configuration information during the set up phase for each elementary stream (see 7.2.6.6).

Information is received from the DAI in the form of SL packets. The SL packet headers are removed at the input to the
decoding buffers.

7.1.4.2.4 Decoder

The decoding processes are assumed to be instantaneous for the purposes of the systems decoder model.

7.1.4.2.5 Composition Memory

The mapping of an AU to one or more CUs (by the decoder) is known implicitly at both the sending and the receiving
terminals.

7.1.4.2.6 Compositor

The composition processes are assumed to be instantaneous for the purposes of the systems decoder model.

7.1.4.3 Managing Buffers: A Walkthrough

In this example, we assume that the model is used in a “push” scenario. In applications where non-real time content is to
be delivered, flow control by suitable signaling may be established to request access units at the time they are needed at
the receiving terminal. The mechanisms for doing so are application-dependent, and are not specified in ISO/IEC 14496.

The behaviors of the various elements in the SDM are modeled as follows:

• The sending terminal signals the required decoding buffer resources to the receiving terminal before starting the
delivery. This is done as specified in 7.2.6.6 either explicitly, by requesting the decoding buffer sizes for individual
elementary streams, or implicitly, by indicating a profile (see subclause 9). The decoding buffer size is measured in
bytes.

• The sending terminal models the behavior of the decoding buffers by making the following assumptions :

• Each decoding buffer is filled at the maximum bitrate specified for its associated elementary stream as long as data is
available.

• At the instant of time corresponding to its DTS, an AU is instantaneously decoded and removed from the decoding
buffer.

• At the instant of time corresponding to its DTS, a known amount of CUs corresponding to the just decoded AU are put
in the composition memory.

The current CU is available to the compositor between instants of time corresponding to the CTS of the current CU and
the CTS of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at the end of
lifetime of its data stream.

Using these assumptions on the buffer model, the sending terminal may freely use the space in the decoding buffers. For
example, it may deliver data for several AUs of a stream, for non real time usage, to the receiving terminal, and pre-store
them in the DB long before they have to be decoded (assuming sufficient space is available). Subsequently, the full
delivery bandwidth may be used to transfer data of a real time stream just in time. The composition memory may be used,
for example, as a reordering buffer. In the case of visual decoding, it may contain the decoded P-frames needed by a
video decoder for the decoding of intermediate B-frames, before the arrival of the CTS of the latest P-frame.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 17

7.2 Object Description Framework

7.2.1 Introduction

The scene description (specified in 14496-11) and the elementary streams that convey streaming data are the basic
building blocks of the architecture of ISO/IEC 14496-1. Elementary streams carry data for audio or visual objects as well
as for the scene description itself. The object description framework provides the link between elementary streams and the
scene description. The scene description declares the spatio-temporal relationship of audio-visual objects, while the object
description framework specifies the elementary stream resources that provide the time-varying data for the scene. This
indirection facilitates independent changes to the scene structure, the properties of the elementary streams (e.g. its
encoding) and their delivery.

The object description framework consists of a set of descriptors that allows to identify, describe and properly associate
elementary streams to each other and to audio-visual objects used in the scene description. Numeric identifiers, called
ObjectDescriptorIDs, associate object descriptors to appropriate nodes in the scene description. Object descriptors are
themselves conveyed in elementary streams to allow time stamped changes to the available set of object descriptors to be
made.

Each object descriptor is itself a collection of descriptors that describe one or more elementary streams that are
associated to a single node and that usually relate to a single audio or visual object. This allows to indicate a scaleable
content representation as well as multiple alternative streams that convey the same content, e.g., in multiple qualities or
different languages.

An elementary stream descriptor within an object descriptor identifies a single elementary stream with a numeric identifier,
called ES_ID. Each elementary stream descriptor contains the information necessary to initiate and configure the
decoding process for the elementary stream, as well as intellectual property identification. Optionally, additional
information may be associated to a single elementary stream, most notably quality of service requirements for its
transmission or a language indication. Both, object descriptors and elementary stream descriptors may use URLs to point
to remote object descriptors or a remote elementary stream source, respectively.

The object description framework provides the hooks to implement intellectual property management and protection
(IPMP) systems. IPMP information is conveyed both through IPMP descriptors as part of the object descriptor stream and
through IPMP streams that carry time variant IPMP information. The structure of IPMP descriptors and IPMP streams is
specified in this clause while their internal syntax and semantics and, hence, the operation of the IPMP system is outside
the scope of ISO/IEC 14496.

Object content information allows the association of metadata with a whole presentation or with individual object
descriptors or with elementary stream descriptors. A set of OCI descriptors is defined that either form an integral part of an
object descriptor or elementary stream descriptor or are conveyed by means of a proper OCI stream that allows the
conveyance of time variant object content information.

Access to ISO/IEC 14496 content is gained through an initial object descriptor that needs to be made available through
means not defined in ISO/IEC 14496. The initial object descriptor in the simplest case points to the scene description
stream and the corresponding object descriptor stream. The access scenario is outlined in 7.2.7.3.

ISO/IEC 14496-1:2004(E)

18 © ISO/IEC 2004 — All rights reserved

100

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

e.g. Movie
Texture

Scene Description

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptor

:

ES_Descriptor

ES_Descriptor

initial
ObjectDescriptor

 :

ES_Descriptor

ES_Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_D ES_D

ES_D

... ...

......

BIFS Command (Replace Scene)

e.g. Audio
Source

Audio Stream

Figure 5 — Object descriptors linking scene description to elementary streams

The remainder of this clause is structured in the following way:

• Subclause 7.2.2 specifies the data structures on which the object descriptor framework is based.

• Subclause 7.2.3 specifies the concepts of the IPMP elements in the object description framework.

• Subclause 7.2.4 specifies the object content information elements in the object description framework.

• Subclause 7.2.5 specifies the object descriptor stream and the syntax and semantics of the command set that allows
the update or removal of object descriptor components.

• Subclause 7.2.6 specifies the syntax and semantics of the object descriptor and its component descriptors.

• Subclause 7.2.7 specifies rules for object descriptor usage as well as the procedure to access content through object
descriptors.

• Subclause 7.2.8 specifies the usage of the IPMP system interface.

7.2.2 Common data structures

7.2.2.1 Overview

The commands and descriptors defined in this subclause constitute self-describing classes, identified by unique class tags.
Each class encodes explicitly its size in bytes. This facilitates future compatible extensions of the commands and
descriptors. A class may be expanded with additional syntax elements that are ignored by an OD decoder that expects an
earlier revision of a class. In addition, anywhere in a syntax where a set of tagged classes is expected it is permissible to
intersperse expandable classes with unknown class tag values. These classes shall be skipped, using the encoded size
information.

The remainder of this clause defines the syntax and semantics of the command and descriptor classes. Some commands
and descriptors contain themselves a set of component descriptors. They are said to aggregate a set of component
descriptors.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 19

Table 1 — List of Class Tags for Descriptors

Tag value Tag name
0x00 Forbidden
0x01 ObjectDescrTag
0x02 InitialObjectDescrTag
0x03 ES_DescrTag
0x04 DecoderConfigDescrTag
0x05 DecSpecificInfoTag
0x06 SLConfigDescrTag
0x07 ContentIdentDescrTag
0x08 SupplContentIdentDescrTag
0x09 IPI_DescrPointerTag
0x0A IPMP_DescrPointerTag
0x0B IPMP_DescrTag
0x0C QoS_DescrTag
0x0D RegistrationDescrTag
0x0E ES_ID_IncTag
0x0F ES_ID_RefTag
0x10 MP4_IOD_Tag
0x11 MP4_OD_Tag
0x12 IPL_DescrPointerRefTag
0x13 ExtensionProfileLevelDescrTag
0x14 profileLevelIndicationIndexDescrTag
0x15-0x3F Reserved for ISO use
0x40 ContentClassificationDescrTag
0x41 KeyWordDescrTag
0x42 RatingDescrTag
0x43 LanguageDescrTag
0x44 ShortTextualDescrTag
0x45 ExpandedTextualDescrTag
0x46 ContentCreatorNameDescrTag
0x47 ContentCreationDateDescrTag
0x48 OCICreatorNameDescrTag
0x49 OCICreationDateDescrTag
0x4A SmpteCameraPositionDescrTag
0x4B SegmentDescrTag
0x4C MediaTimeDescrTag
0x4D-0x5F Reserved for ISO use (OCI extensions)
0x60 IPMP_ToolsListDescrTag
0x61 IPMP_ToolTag
0x62 M4MuxTimingDescrTag
0x63 M4MuxCodeTableDescrTag
0x64 ExtSLConfigDescrTag
0x65 M4MuxBufferSizeDescrTag
0x66 M4MuxIdentDescrTag
0x67 DependencyPointerTag
0x68 DependencyMarkerTag
0x69 M4MuxChannelDescrTag
0x6A-0xBF Reserved for ISO use
0xC0-0xFE User private
0xFF Forbidden

ISO/IEC 14496-1:2004(E)

20 © ISO/IEC 2004 — All rights reserved

7.2.2.2 BaseDescriptor

7.2.2.2.1 Syntax

abstract aligned(8) expandable(228-1) class BaseDescriptor : bit(8) tag=0 {
 // empty. To be filled by classes extending this class.
}

7.2.2.2.2 Semantics

This class is an abstract base class that is extended by the descriptor classes specified in 7.2.6. Each descriptor
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common name
space for the class tags of these descriptors. The values of the class tags are defined in Table 1. As an expandable class
the size of each class instance in bytes is encoded and accessible through the instance variable sizeOfInstance (see
subclause 8.3.3).

A class that allows the aggregation of classes of type BaseDescriptor may actually aggregate any of the classes that
extend BaseDescriptor.

NOTE — User private descriptors may have an internal structure, for example to identify the country or manufacturer that
uses a specific descriptor. The tags and semantics for such user private descriptors may be managed by a registration
authority if required.

The following additional symbolic names are introduced:

ExtDescrTagStartRange = 0x60

ExtDescrTagEndRange = 0xFE

OCIDescrTagStartRange = 0x40

OCIDescrTagEndRange = 0x5F

7.2.2.3 BaseCommand

7.2.2.3.1 Syntax

abstract aligned(8) expandable(228-1) class BaseCommand : bit(8) tag=0 {
 // empty. To be filled by classes extending this class.
}

7.2.2.3.2 Semantics

This class is an abstract base class that is extended by the command classes specified in 7.2.5.5. Each command
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common name
space for the class tags of these commands. The values of the class tags are defined in Table 2. As an expandable class
the size of each class instance in bytes is encoded and accessible through the instance variable sizeOfInstance (see
clause 8.3.3).

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 21

Table 2 — List of Class Tags for Commands

Tag value Tag name
0x00 forbidden
0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES_DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag
0x07 ES_DescrRemoveRefTag
0x08 ObjectDescrExecuteTag
0x09-0xBF Reserved for ISO (command tags)
0xC0-0xFE User private
0xFF forbidden

A class that allows the aggregation of classes of type BaseCommand may actually aggregate any of the classes that
extend BaseCommand.

NOTE — User private commands may have an internal structure, for example to identify the country or manufacturer that
uses a specific command. The tags and semantics for such user private command may be managed by a registration
authority if required.

7.2.3 Intellectual Property Management and Protection Framework (IPMP)

7.2.3.1 Overview

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems or IPMP Tools.
Additionally, the framework contains a secure messaging system usable between IPMP Tools as well as IPMP Tools and
the Terminal and IPMP Tools and the User which is specified in ISO/IEC 14496-13.

An IPMP System or IPMP Tools are non-normative components that provide intellectual property management and
protection functions for the terminal.

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of IPMP
elementary streams is specified in this subclause. IPMP descriptors are carried as part of an object descriptor stream and
are specified in 7.2.6.14. The IPMP interface allows applications (or derivative application standards) to build specialized
IPMP Systems or IPMP Tools. Alternatively, an application may choose not to use an IPMP System or IPMP Tools,
thereby offering no management and protection features. The IPMP System and IPMP Tools use the information carried
by the IPMP elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. The
detailed semantics and decoding process of the IPMP System or IPMP Tools are not in the scope of ISO/IEC 14496. The
usage of the IPMP System/Tools Interface, however, is explained in 7.2.8 with the usage of the IPMP framework being
explained.

7.2.3.2 IPMP Streams

7.2.3.2.1 Structure of the IPMP Stream

The IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems or Tools.
This is accomplished by periodically sending a sequence of IPMP messages along with the content at a period determined
by the IPMP System(s) or Tool(s).

ISO/IEC 14496-1:2004(E)

22 © ISO/IEC 2004 — All rights reserved

7.2.3.2.2 Access Unit Definition

An IPMP access unit consists of one or more IPMP messages, as defined in 7.2.3.2.5. All IPMP messages that are to be
processed at the same instant in time shall constitute a single access unit. Access units in IPMP streams shall be labeled
and time-stamped by suitable means. This shall be done via the related flags and the composition time stamps,
respectively, in the SL packet header (see 7.3.2.4). The composition time indicates the point in time at which an IPMP
access unit becomes valid, i.e., when the embedded IPMP messages shall be evaluated. Decoding and composition time
for an IPMP access unit shall always have the same value.

An access unit does not necessarily convey or update the complete set of IPMP messages that are currently required. In
that case it just modifies the persistent state of the IPMP system. However, if an access unit conveys the complete set of
IPMP messages required at a given point in time it shall set the randomAccessPointFlag in the SL packet header to
‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no IPMP messages in it indicates that at the current
time instant no IPMP messages are required for operation.

7.2.3.2.3 Time Base for IPMP Streams

The time base associated to an IPMP stream shall be indicated by suitable means. This shall be done by means of object
clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or by indicating the elementary stream
from which this IPMP stream inherits the time base (see 7.3.2.3). All time stamps in the SL-packetized IPMP stream refer
to this time base.

An IPMP stream shall adhere to the same time base as the one or more content elementary streams to which it is
associated (see 7.2.8). Consequently, an IPMP stream may not be associated to multiple content elementary streams that
themselves adhere to different time bases.

7.2.3.2.4 IPMP Decoder Configuration

7.2.3.2.4.1 Syntax

class IPMPDecoderConfiguration extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag
{
 // IPMP system specific configuration information
}

7.2.3.2.4.2 Semantics

An IPMP system may require information to initialize its operation. This information shall be conveyed by extending the
decoderSpecificInfo class as specified in 7.2.6.7. If utilized, IPMPDecoderConfiguration shall be conveyed in
the ES_Descriptor declaring the IPMP stream.

7.2.3.2.5 IPMP message syntax and semantics

7.2.3.2.5.1 Syntax

aligned(8) expandable(228-1) class IPMP_Message
{
 bit(16) IPMPS_Type;
 if (IPMPS_Type == 0)
 (
 bit(8) URLString[sizeOfInstance-2];
)
 else (if (IPMPS_Type == 0xFFFF)
 (
 bit(16) IPMP_DescriptorIDEx;
 IPMP_Data_BaseClass IPMP_ExtendedData[]
 } else {
 bit(8) IPMP_data[sizeOfInstance-2];
 }
}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 23

7.2.3.2.5.2 Semantics

The IPMP_Message conveys time-varying IPMP information for associated IPMP System or IPMP Tool instances.

IPMPS_Type – The type of the IPMP System, in “Hooks“ compliant Terminals as specified in ISO/IEC 14496-1. The
values “0x0002” to “0x2000” are reserved for future ISO use. A Registration Authority, as designated by ISO/IEC JTC 1,
shall assign a unique valid value for this field for a specific IPMP System Type. If the IPMP_DescriptorID is “0”, another
URL is referenced. This process continues until an IPMP_Message with a non-zero IPMP_DescriptorID is accessed.

URLString[] - contains a UTF-8 [6] encoded URL that shall point to the location of a remote IPMP_Message.

IPMP_DescriptorID – this is one of the IPMP_DescriptorIDs in the scope of service of this IPMP Stream and
identifies the recipient(s) of the IPMP_Message.

IPMP_ExtendedData - The IPMP data that is extended from IPMP_Data_BaseClass to be delivered to the IPMP tool.

IPMP_data - opaque data to be delivered to the IPMP Tool.

The IPMP_Message is backward compatible with the IPMP_Message of ISO/IEC 14496-1: 2001. However, in order to
unambiguously identify the version of the IPMP stream, the ObjectTypeIndication shall be set to “0x02” for streams
complying with this part of the specification. IPMP Streams complying with ISO/IEC 14496-1 shall use an
ObjectTypeIndication of “0xFF” as specified for in 7.2.6.6.2.

7.2.3.2.6 Extension tags for the IPMP_Data_BaseClass

7.2.3.2.6.1 IPMP_Data_BaseClass

The IPMP_Data_BaseClass is intended to be extended to provide the carriage of ISO defined as well as user defined
IPMP related data.

7.2.3.2.6.2 Syntax

abstract aligned(8) expandable(2^28-1) class IPMP_Data_BaseClass:
 bit(8) tag=0…255
{
 bit(8) Version;
 bit(32) dataID;
 // Fields and data extending this message.
}

7.2.3.2.6.3 Semantics

Version - indicates the version of syntax used in the IPMP Data and shall be set to “0x01”.

dataID – used for the purpose of identifying the message. Tools replying directly to a message shall include the same
dataID in any response.

tag indicates the tag for the extended IPMP data. The exact values for the extension tags are defined in
ISO/IEC 14496-13.

IPMP data extending from IPMP_Data_BaseClass can be carried in the following three places:

• IPMP_Descriptor
• IPMP_Message defined in ISO/IEC 14496-13 which is subsequently carried in IPMP Stream.
• Messages defined in ISO/IEC 14496-13 specified to carry messages between IPMP tools.

ISO/IEC 14496-1:2004(E)

24 © ISO/IEC 2004 — All rights reserved

7.2.4 Object Content Information (OCI)

7.2.4.1 Overview

Audio-visual objects that are associated with elementary stream data through an object descriptor may have additional
object content information attached to them. For this purpose, a set of OCI descriptors is defined in 7.2.6.18. OCI
descriptors may directly be included as part of an object descriptor or ES_Descriptor as defined in 7.2.6.

In order to accommodate time variant OCI that is separable from the object descriptor stream, OCI descriptors may as well
be conveyed in an OCI stream. An OCI stream is referred to through an ES_Descriptor, with the streamType field set to
OCI_Stream. How OCI streams may be aggregated to object descriptors is defined in 7.2.7.1.3. The structure of the OCI
stream is defined in this subclause.

7.2.4.2 OCI Streams

7.2.4.2.1 Structure of the OCI Stream

The OCI stream is an elementary stream that conveys time-varying object content information, termed OCI events. Each
OCI event consists of a number of OCI descriptors.

7.2.4.2.2 Access Unit Definition

An OCI access unit consists of one or more OCI_Events, as described in 7.2.4.2.5. Access units in OCI elementary
streams shall be labelled and time stamped by suitable means. This shall be done by means of the related flags and the
composition time stamp, respectively, in the SL packet header (see7.3.2.4). The composition time indicates the point in
time when an OCI access unit becomes valid, i.e., when the embedded OCI events shall be added to the list of events.
Decoding and composition time for an OCI access unit shall always have the same value.

An access unit may or may not convey or update the complete set of OCI events that are currently valid. In the latter case,
it just modifies the persistent state of the OCI decoder. However, if an access unit conveys the complete set of OCI events
valid at a given point in time it shall set the randomAccessPointFlag in the SL packet header to ‘1’ for this access unit.
Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OCI events in it indicates that at the current time
instant no valid OCI events exist.

7.2.4.2.3 Time Base for OCI Streams

The time base associated with an OCI stream shall be indicated by suitable means. This shall be done by the use of
object clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or by indicating the elementary
stream from which this OCI stream inherits the time base (see 7.3.2.3). All time stamps in the SL-packetized OCI stream
refer to this time base.

7.2.4.2.4 OCI Decoder Configuration

7.2.4.2.4.1 Syntax

class OCIDecoderConfiguration extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag
{
 const bit(8) versionLabel = 0x01;
}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 25

7.2.4.2.4.2 Semantics

This information is needed to initialize operation of the OCI decoder. It shall be conveyed by extending the
decoderSpecificInfo class as specified in 7.2.6.7. OCIDecoderConfiguration shall be conveyed in the
ES_Descriptor declaring the OCI stream.

versionLabel – indicates the version of OCI specification used on the corresponding OCI data stream. Only the value
0x01 is allowed; all the other values are reserved.

7.2.4.2.5 OCI_Events syntax and semantics

7.2.4.2.5.1 Syntax

aligned(8) expandable(228-1) class OCI_Event {
 bit(15) eventID;
 bit(1) absoluteTimeFlag;
 bit(32) startingTime;
 bit(32) duration;
 OCI_Descriptor OCI_Descr[1 .. 255];
}

7.2.4.2.5.2 Semantics

eventID – contains the identification number of the described event that is unique within the scope of this OCI stream.

absoluteTimeFlag – indicates the time base for startingTime as described below.

startingTime – indicates the starting time of the event in hours, minutes, seconds and hundredth of seconds. The
format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded decimal and the
last two expressing hundredth of seconds in hexadecimal using 8 bits.

EXAMPLE 02:36:45:89 is coded as “0x023645” concatenated with “0b0101.1001” (89 in binary), resulting to
“0x02364559”.

If absoluteTimeFlag is set to zero, startingTime is relative to the object time base of the corresponding object. In
that case it is the responsibility of the application to ensure that this object time base is conveyed such that
startingTime can be identified unambiguously (see 7.3.2.7). If absoluteTimeFlag is set to one, startingTime is
expressed as an absolute value, refering to wall clock time.

duration – contains the duration of the corresponding object in hours, minutes, seconds and hundredth of seconds. The
format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded decimal and the
last two expressing hundredth of seconds in hexadecimal using 8 bits.

OCI_Descr[] – an array of one up to 255 OCI_Descriptor classes as specified in 7.2.6.18.2.

7.2.5 Object Descriptor Stream

7.2.5.1 Structure of the Object Descriptor Stream

Similar to the scene description, object descriptors are transported in a dedicated elementary stream, termed object
descriptor stream. Within such a stream, it is possible to dynamically convey, update and remove complete object
descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptors. The update mechanism allows, for
example, to advertise new elementary streams for an audio-visual object as they become available, or to remove
references to streams that are no longer available. Updates are time stamped to indicate the instant in time they take
effect.

This subclause specifies the structure of the object descriptor elementary stream including the syntax and semantics of its
constituent elements, the object descriptor commands (OD commands).

ISO/IEC 14496-1:2004(E)

26 © ISO/IEC 2004 — All rights reserved

7.2.5.2 Access Unit Definition

An OD access unit consists of one or more OD commands, as described in 7.2.5.5. All OD commands that are to be
processed at the same instant in time shall constitute a single access unit. Access units in object descriptor elementary
streams shall be labelled and time stamped by suitable means. This shall be done by means of the related flags and the
composition time stamp, respectively, in the SL packet header (see 7.3.2.4). The composition time indicates the point in
time when an OD access unit becomes valid, i.e., when the embedded OD commands shall be executed. Decoding and
composition time for an OD access unit shall always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In that case it
just modifies the persistent state of the object descriptor decoder. However, if an access unit conveys the complete set of
object descriptors required at a given point in time it shall set the randomAccessPointFlag in the SL packet header to
‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OD commands in it indicates that at the current
time instant no valid object descriptors exist.

7.2.5.3 Time Base for Object Descriptor Streams

The time base associated to an object descriptor stream shall be indicated by suitable means. This shall be done by
means of object clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or by indicating the
elementary stream from which this object descriptor stream inherits the time base (see 7.3.2.3). All time stamps in the SL-
packetized object descriptor stream refer to this time base.

7.2.5.4 OD Decoder Configuration

The object descriptor decoder does not require additional configuration information.

7.2.5.5 OD Command Syntax and Semantics

7.2.5.5.1 Overview

Object descriptors and their components as defined in 7.2.6 shall always be conveyed as part of one of the OD commands
specified in this subclause. The commands describe the action to be taken on the components conveyed with the
command, specifically ‘update’ or ‘remove’. Each command affects one or more object descriptors, ES_Descriptors or
IPMP descriptors.

7.2.5.5.2 ObjectDescriptorUpdate

7.2.5.5.2.1 Syntax

class ObjectDescriptorUpdate extends BaseCommand : bit(8) tag=ObjectDescrUpdateTag {
 ObjectDescriptorBase OD[0 .. 255];
}

7.2.5.5.2.2 Semantics

The ObjectDescriptorUpdate class conveys a list of new or updated object descriptors. If an object descriptor is
updated, the streams refered to by the old object descriptor shall be closed and the streams refered to by the new object
descriptor may be accessed by the content access procedure (see 7.2.7.3.6.2).

NOTE - The ES_DescriptorUpdate or ES_DescriptorRemove commands may be used to add or remove individual
ES_Descriptors of an existing object descriptor.

OD[] – an array of object descriptors as defined in 7.2.6.3 and 7.2.6.4. The array shall have any number of one up to 255
elements.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 27

7.2.5.5.3 ObjectDescriptorRemove

7.2.5.5.3.1 Syntax

class ObjectDescriptorRemove extends BaseCommand : bit(8) tag=ObjectDescrRemoveTag {
 bit(10) objectDescriptorId[(sizeOfInstance*8)/10];
}

7.2.5.5.3.2 Semantics

The ObjectDescriptorRemove class renders unavailable a set of object descriptors. The BIFS nodes associated to
these object descriptors shall have no reference any more to the elementary streams that have been listed in the removed
object descriptors. An objectDescriptorID that does not refer to a valid object descriptor is ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated
OD.

ObjectDescriptorId[] – an array of ObjectDescriptorIDs that indicates the object descriptors that are removed.

7.2.5.5.4 ES_DescriptorUpdate

7.2.5.5.4.1 Syntax

class ES_DescriptorUpdate extends BaseCommand : bit(8) tag=ES_DescrUpdateTag {
 bit(10) objectDescriptorId;
 ES_Descriptor esDescr[1 .. 255];
}

7.2.5.5.4.2 Semantics

The ES_DescriptorUpdate class conveys a list of new ES_Descriptors for the object descriptor labeled
objectDescriptorID. ES_Descriptors with ES_IDs that have already been received within the same name scope shall
be ignored.

To update the characterstics of an elementary stream, it is required that its original ES_Descriptor be removed and the
changed ES_Descriptor be conveyed.

When an IPMP stream is added, the affected elementary streams, as defined in 7.2.8.2, shall be processed under the new
IPMP conditions starting at the point in time that this ES_DescriptorUpdate command becomes valid (see 7.2.5.2).

ES_DescriptorUpdate shall not be applied on object descriptors that have set URL_Flag to '1' (see 7.2.6.3).

An elementary stream identified with a given ES_ID may be attached to more than one object descriptor. All
corresponding ES_Descriptors refering to this ES_ID that are conveyed through either ES_DescriptorUpdate or
ObjectDescriptorUpdate commands shall have identical content.

objectDescriptorID - identifies the object descriptor for which ES_Descriptors are updated. If the
objectDescriptorID does not refer to any valid object descriptor, then this command is ignored.

esDescr[] – an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one up to 255
elements.

7.2.5.5.5 ES_DescriptorRemove

7.2.5.5.5.1 Syntax

class ES_DescriptorRemove extends BaseCommand : bit(8) tag=ES_DescrRemoveTag {
 bit(10) objectDescriptorId;
 aligned (8) bit(16) ES_ID[1..255];
}

ISO/IEC 14496-1:2004(E)

28 © ISO/IEC 2004 — All rights reserved

7.2.5.5.5.2 Semantics

The ES_DescriptorRemove class removes the reference to an elementary stream from an object descriptor and
renders this stream unavailable for nodes referencing this object descriptor.

When an IPMP stream is removed, the affected elementary streams, as defined in 7.2.8.2, shall be processed under the
new IPMP conditions starting at the point in time that this ES_DescriptorRemove command becomes valid (see 7.2.5.2).

ES_DescriptorRemove shall not be applied on object descriptors that have set URL_Flag to '1' (see 7.2.6.3).

objectDescriptorID - identifies the object descriptor from which ES_Descriptors are removed. If the
objectDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES_ID[] – an array of ES_IDs that labels the ES_Descriptors to be removed from objectDescriptorID. If any
of the ES_IDs do not refer to an ES_Descriptor currently referenced by the OD, then those ES_IDs are ignored. The
array shall have any number of one up to 255 elements.

7.2.5.5.6 IPMP_DescriptorUpdate

7.2.5.5.6.1 Syntax

class IPMP_DescriptorUpdate extends BaseCommand : bit(8) tag=IPMP_DescrUpdateTag {
 IPMP_Descriptor ipmpDescr[1..255];
}

7.2.5.5.6.2 Semantics

The IPMP_DescriptorUpdate class conveys a list of new or updated IPMP_Descriptors. An IPMP_Descriptor
identified by an IPMP_DescriptorID that has already been received within the same name scope shall be replaced by
the new descriptor.

Updates to an IPMP_Descriptor shall be propagated at the time this IPMP_DescriptorUpdate becomes valid (see
7.2.5.2) to all IPMP Systems that refer to this IPMP_Descriptor through an IPMP_DescriptorPointer (see
7.2.6.13). The handling of the descriptors by the IPMP systems is not normative.

IPMP_Descriptors remain valid until they are replaced by another IPMP_DescriptorUpdate command or removed.

ipmpDescr[] – an array of IPMP_Descriptor as specified in 7.2.6.14.

7.2.5.5.7 IPMP_DescriptorRemove

7.2.5.5.7.1 Syntax

class IPMP_DescriptorRemove extends BaseCommand : bit(8) tag=IPMP_DescrRemoveTag {
 bit(8) IPMP_DescriptorID[1..255];
}

7.2.5.5.7.2 Semantics

The IPMP_DescriptorRemove class conveys a list of IPMP_DescriptorsIDs that identify the IPMP_Descriptors
that shall be removed.

The removal of IPMP_Descriptors shall be notified to all IPMP systems at the time this IPMP_DescriptorRemove becomes
valid (see 7.2.5.2). The handling of the descriptors by the IPMP systems is not normative.

IPMP_DescriptorID[] - is a list of IPMP_DescriptorIDs.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 29

7.2.5.5.8 ObjectDescriptorExecute

7.2.5.5.8.1 Syntax

class ObjectDescriptorExecute extends BaseCommand : bit(8) tag= ObjectDescriptorExecuteTag
{
 bit(10) objectDescriptorId[(sizeOfInstance*8)/10];
}

7.2.5.5.8.2 Semantics

The ObjectDescriptorExecute class instructs the terminal that Elementary streams contained therein shall be
opened as the server will transmit data on one or more of the streams. Failure by the terminal to comply may result in data
loss and/or other undefined behavior.

7.2.6 Object Descriptor Components

7.2.6.1 Overview

Object descriptors contain various additional descriptors as their components, in order to describe individual elementary
streams and their properties. They shall always be conveyed as part of one of the OD commands specified in the previous
subclause. This subclause defines the syntax and semantics of object descriptors and their component descriptors.

7.2.6.2 ObjectDescriptorBase

7.2.6.2.1 Syntax

abstract class ObjectDescriptorBase extends BaseDescriptor : bit(8)
tag=[ObjectDescrTag..InitialObjectDescrTag] {
// empty. To be filled by classes extending this class.
}

7.2.6.2.2 Semantics

This is an abstract base class for the different types of object descriptor classes defined subsequently. The term “object
descriptor” is used to generically refer to any such derived object descriptor class or instance thereof.

7.2.6.3 ObjectDescriptor

7.2.6.3.1 Syntax

class ObjectDescriptor extends ObjectDescriptorBase : bit(8) tag=ObjectDescrTag {
 bit(10) ObjectDescriptorID;
 bit(1) URL_Flag;
 const bit(5) reserved=0b1111.1;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 } else {
 ES_Descriptor esDescr[1 .. 255];
 OCI_Descriptor ociDescr[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 IPMP_Descriptor ipmpDescr [0 .. 255];
 }
 ExtensionDescriptor extDescr[0 .. 255];
}

When an ObjectDescriptor is used in the OD track of an MP4 file, the ObjectDescrTag is replaced by
MP4_OD_Tag.

ISO/IEC 14496-1:2004(E)

30 © ISO/IEC 2004 — All rights reserved

7.2.6.3.2 Semantics

The ObjectDescriptor consists of three different parts.

The first part uniquely labels the object descriptor within its name scope (see 7.2.7.2.4) by means of an
objectDescriptorId. Nodes in the scene description use objectDescriptorID to refer to the related object
descriptor. An optional URLstring indicates that the actual object descriptor resides at a remote location.

The second part consists of a list of ES_Descriptors, each providing parameters for a single elementary as well as an
optional set of object content information descriptors and pointers to IPMP descriptors for the contents for elementary
stream content described in this object descriptor.

The third part is a set of optional descriptors that support the inclusion of future extensions as well as the transport of
private data in a backward compatible way.

objectDescriptorId – This syntax element uniquely identifies the ObjectDescriptor within its name scope. The
value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another ObjectDescriptor.
Only the content of this object descriptor shall be returned by the delivery entity upon access to this URL. Within the
current name scope, the new object descriptor shall be referenced by the objectDescriptorId of the object descriptor
carrying the URLstring. On name scopes see 7.2.7.2.4. Permissible URLs may be constrained by profile and levels as well
as by specific delivery layers.

esDescr[] – an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one up to 255
elements.

ociDescr[] – an array of OCI_Descriptors, as defined in 7.2.6.18.2, that relates to the audio-visual object(s)
described by this object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

ipmpDescr [] – a list of IPMP_Descriptors that may be referenced by streams declared in esDescr��The
array shall have any number of zero up to 255 elements. The following scope and usage rules apply:

i. Entries in the ipmpDescr table define IPMP System/Tools that can be referenced by
IPMP_DescriptorPointers located in the OD itself or ESDs declared in this OD.

ii. OD contained IPMP_Descriptors have scope within the given OD only and shall not be
referenced by subsequently declared IODs, ODs, streams nor available for updating via
IPMP_DescriptorUpdates.

iii. The OD contained IPMP_Descriptors shall not be referenced by IODs, ODs or streams declared
in OD declared OD or Scene streams.

extDescr[] – an array of ExtensionDescriptors as defined in 7.2.6.16. The array shall have any number of zero
up to 255 elements.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 31

7.2.6.4 InitialObjectDescriptor

7.2.6.4.1 Syntax

class InitialObjectDescriptor extends ObjectDescriptorBase : bit(8)
tag=InitialObjectDescrTag {
 bit(10) ObjectDescriptorID;
 bit(1) URL_Flag;
 bit(1) includeInlineProfileLevelFlag;
 const bit(4) reserved=0b1111;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 } else {
 bit(8) ODProfileLevelIndication;
 bit(8) sceneProfileLevelIndication;
 bit(8) audioProfileLevelIndication;
 bit(8) visualProfileLevelIndication;
 bit(8) graphicsProfileLevelIndication;
 ES_Descriptor esDescr[1 .. 255];
 OCI_Descriptor ociDescr[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 IPMP_Descriptor ipmpDescr [0 .. 255];
 IPMP_ToolListDescriptor toolListDescr[0 .. 1];
 }
 ExtensionDescriptor extDescr[0 .. 255];
}

When an InitialObjectDescriptor is used in the OD track in an MP4 file, the InitialObjectDescrTag is replaced by
MP4_IOD_Tag.

7.2.6.4.2 Semantics

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous subclause that
allows to signal profile and level information for the content refered by it. It shall be used to gain initial access to
ISO/IEC 14496 content (see 7.2.7.3).

Profile and level information indicated in the InitialObjectDescriptor indicates the profile and level supported by at
least the first base layer stream (i.e. an elementary stream with a streamDependenceFlag set to 0) in each object
descriptor depending on this initial object descriptor.

objectDescriptorId – This syntax element uniquely identifies the InitialObjectDescriptor within its name
scope (see 7.2.7.2.4). The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring.

includeInlineProfileLevelFlag – a flag that, if set to one, indicates that the subsequent profile indications take
into account the resources needed to process any content that might be inlined.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
InitialObjectDescriptor. Only the content of this object descriptor shall be returned by the delivery entity upon
access to this URL. Within the current name scope, the new object descriptor shall be referenced by the
objectDescriptorId of the object descriptor carrying the URLstring. On name scopes see 7.2.7.2.4. Permissible URLs
may be constrained by profile and levels as well as by specific delivery layers.

ODProfileLevelIndication – an indication as defined in Table 3 of the object descriptor profile and level required to
process the content associated with this InitialObjectDescriptor.

ISO/IEC 14496-1:2004(E)

32 © ISO/IEC 2004 — All rights reserved

Table 3 — ODProfileLevelIndication Values

Value Profile Level
0x00 Forbidden -
0x01 Reserved for ISO use (no SL extension) -
0x02-0x7F Reserved for ISO use (SL extension) -
0x03-0x7F Reserved for ISO use
0x80-0xFD user private -
0xFE No OD profile specified -
0xFF No OD capability required -
NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any OD profile specified in ISO/IEC 14496-1. Usage of the value 0xFF indicates that
none of the OD profile capabilities are required for this content. Usage of the value 0x01 also indicates
that the SL extension mechanism is not present .

sceneProfileLevelIndication – an indication as defined in ISO/IEC 14496-11 of the scene graph profile and level
required to process the content associated with this InitialObjectDescriptor.

audioProfileLevelIndication – an indication as defined in ISO/IEC 14496-3 of the audio profile and level required
to process the content associated with this InitialObjectDescriptor.

visualProfileLevelIndication – an indication as defined in ISO/IEC 14496-2 and in Table 4 of the visual profile
and level required to process the content associated with this InitialObjectDescriptor.

Table 4 — visualProfileLevelIndication Values

Value Profile Level
0x00-0x7E defined in ISO/IEC 14496-2 Annex G -
0x7F ISO/IEC 14496-10 Advanced Video Coding -
0x80-0xFD defined in ISO/IEC 14496-2 Annex G -
0xFE no visual profile specified -
0xFF no visual capability required
NOTE — Usage of the value 0x7F indicates the use of any profile and level of ISO/IEC 14496-10 AVC.
For the real profile and level numbers for ISO/IEC 14496-10 refer to the DecoderSpecificInfo.
NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any visual profile specified in ISO/IEC 14496-2 or -10. Usage of the value 0xFF
indicates that none of the visual profile capabilities are required for this content.

graphicsProfileLevelIndication – an indication as defined in ISO/IEC 14496-11 of the graphics profile and level
required to process the content associated with this InitialObjectDescriptor.

esDescr[] – an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one up to 255
elements.

ociDescr[] – an array of OCI_Descriptors as defined in 7.2.6.18 that relates to the set of audio-visual objects that are
described by this initial object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 33

ipmpDescr [] – a list of IPMP_Descriptors that may be referenced by streams declared in esDescr��The array shall
have any number of zero up to 255 elements. The following scope and usage rules apply:

i. Entries in the ipmpDescr table define IPMP System/Tools that can be referenced by
IPMP_DescriptorPointers located in the IOD itself or ESDs declared in this IOD.

ii. IOD contained IPMP_Descriptors have scope within the given IOD only and shall not be referenced
by subsequently declared IODs, ODs, streams nor available for updating via
IPMP_DescriptorUpdates.

iii. The IOD contained IPMP_Descriptors shall not be referenced by IODs, ODs, streams declared
in IOD declared OD or Scene streams.

toolListDescr – a list of all IPMP tools required for the processing of the content. The array shall have zero or 1
element.

extDescr[] – an array of ExtensionDescriptors as defined in 7.2.6.16. The array shall have any number of zero
up to 255 elements.

7.2.6.5 ES_Descriptor

7.2.6.5.1 Syntax

class ES_Descriptor extends BaseDescriptor : bit(8) tag=ES_DescrTag {
 bit(16) ES_ID;
 bit(1) streamDependenceFlag;
 bit(1) URL_Flag;
 bit(1) OCRstreamFlag;
 bit(5) streamPriority;
 if (streamDependenceFlag)
 bit(16) dependsOn_ES_ID;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 }
 if (OCRstreamFlag)
 bit(16) OCR_ES_Id;
 DecoderConfigDescriptor decConfigDescr;
 if (ODProfileLevelIndication==0x01) //no SL extension.
 {
 SLConfigDescriptor slConfigDescr;
 }
 else // SL extension is possible.
 {
 SLConfigDescriptor slConfigDescr;
 }
 IPI_DescrPointer ipiPtr[0 .. 1];
 IP_IdentificationDataSet ipIDS[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 LanguageDescriptor langDescr[0 .. 255];
 QoS_Descriptor qosDescr[0 .. 1];
 RegistrationDescriptor regDescr[0 .. 1];
 ExtensionDescriptor extDescr[0 .. 255];
}

7.2.6.5.2 Semantics

The ES_Descriptor conveys all information related to a particular elementary stream and has three major parts.

The first part consists of the ES_ID which is a unique reference to the elementary stream within its name scope (see
7.2.7.2.4), a mechanism to describe dependencies of elementary streams within the scope of the parent object descriptor
and an optional URL string. Dependencies and usage of URLs are specified in 7.2.7.

The second part consists of the component descriptors which convey the parameters and requirements of the elementary
stream.

ISO/IEC 14496-1:2004(E)

34 © ISO/IEC 2004 — All rights reserved

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well as the
transport of private data in a backward compatible way.

ES_ID – This syntax element provides a unique label for each elementary stream within its name scope. The values 0
and 0xFFFF are reserved.

streamDependenceFlag – If set to one indicates that a dependsOn_ES_ID will follow.

URL_Flag – if set to 1 indicates that a URLstring will follow.

OCRstreamFlag – indicates that an OCR_ES_ID syntax element will follow.

streamPriority – indicates a relative measure for the priority of this elementary stream. An elementary stream with a
higher streamPriority is more important than one with a lower streamPriority. The absolute values of
streamPriority are not normatively defined.

dependsOn_ES_ID – is the ES_ID of another elementary stream on which this elementary stream depends. The stream
with dependsOn_ES_ID shall also be associated to the same object descriptor as the current ES_Descriptor.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of an SL-packetized
stream by name. The parameters of the SL-packetized stream that is retrieved from the URL are fully specified in this
ES_Descriptor. See also 7.2.7.3.3. Permissible URLs may be constrained by profile and levels as well as by specific
delivery layers.

OCR_ES_ID – indicates the ES_ID of the elementary stream within the name scope (see 7.2.7.2.4) from which the time
base for this elementary stream is derived. Circular references between elementary streams are not permitted.

decConfigDescr – is a DecoderConfigDescriptor as specified in 7.2.6.6.

slConfigDescr – is an SLConfigDescriptor as specified in 7.2.6.8. If ODProfileLevelIndication is different
from 0x01, it may be an extension of SLConfigDescriptor (i.e. and extended class) as defined in 7.2.6.8.

ipiPtr[] – an array of zero or one IPI_DescrPointer as specified in 7.2.6.12.

ipIDS[] – an array of zero or more IP_IdentificationDataSet as specified in 7.2.6.9.

Each ES_Descriptor shall have either one IPI_DescrPointer or zero up to 255 IP_IdentificationDataSet
elements. This allows to unambiguously associate an IP Identification to each elementary stream.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the
IPMP_Descriptors related to the elementary stream described by this ES_Descriptor. The array shall have any number
of zero up to 255 elements.

langDescr[] – an array of zero or one LanguageDescriptor structures as specified in 7.2.6.18.6. It indicates the
language attributed to this elementary stream.

NOTE — Multichannel audio streams may be treated as one elementary stream with one ES_Descriptor by
ISO/IEC 14496. In that case different languages present in different channels of the multichannel stream are not
identifyable with a LanguageDescriptor.

qosDescr[] – an array of zero or one QoS_Descriptor as specified in 7.2.6.15.

extDescr[] – an array of ExtensionDescriptor structures as specified in 7.2.6.16.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 35

7.2.6.6 DecoderConfigDescriptor

7.2.6.6.1 Syntax

class DecoderConfigDescriptor extends BaseDescriptor : bit(8) tag=DecoderConfigDescrTag {
 bit(8) objectTypeIndication;
 bit(6) streamType;
 bit(1) upStream;
 const bit(1) reserved=1;
 bit(24) bufferSizeDB;
 bit(32) maxBitrate;
 bit(32) avgBitrate;
 DecoderSpecificInfo decSpecificInfo[0 .. 1];
 profileLevelIndicationIndexDescriptor profileLevelIndicationIndexDescr [0..255];
}

7.2.6.6.2 Semantics

The DecoderConfigDescriptor provides information about the decoder type and the required decoder resources
needed for the associated elementary stream. This is needed at the receiving terminal to determine whether it is able to
decode the elementary stream. A stream type identifies the category of the stream while the optional decoder specific
information descriptor contains stream specific information for the set up of the decoder in a stream specific format that is
opaque to this layer.

ObjectTypeIndication – an indication of the object or scene description type that needs to be supported by the
decoder for this elementary stream as per Table 5.

Table 5 — objectTypeIndication Values

Value ObjectTypeIndication Description
0x00 Forbidden
0x01 Systems ISO/IEC 14496-1 a
0x02 Systems ISO/IEC 14496-1 b
0x03 Interaction Stream
0x04 Systems ISO/IEC 14496-1 Extended BIFS Configuration c
0x05 Systems ISO/IEC 14496-1 AFX d
0x06 Font Data Stream
0x07 Synthesized Texture Stream
0x08 Streaming Text Stream
0x09-0x1F reserved for ISO use
0x20 Visual ISO/IEC 14496-2 e
0x21 Visual ITU-T Recommendation H.264 | ISO/IEC 14496-10 f
0x22 Parameter Sets for ITU-T Recommendation H.264 | ISO/IEC

14496-10 f
0x23-0x3F reserved for ISO use
0x40 Audio ISO/IEC 14496-3 g
0x41-0x5F reserved for ISO use
0x60 Visual ISO/IEC 13818-2 Simple Profile
0x61 Visual ISO/IEC 13818-2 Main Profile
0x62 Visual ISO/IEC 13818-2 SNR Profile
0x63 Visual ISO/IEC 13818-2 Spatial Profile
0x64 Visual ISO/IEC 13818-2 High Profile
0x65 Visual ISO/IEC 13818-2 422 Profile
0x66 Audio ISO/IEC 13818-7 Main Profile
0x67 Audio ISO/IEC 13818-7 LowComplexity Profile
0x68 Audio ISO/IEC 13818-7 Scaleable Sampling Rate Profile

ISO/IEC 14496-1:2004(E)

36 © ISO/IEC 2004 — All rights reserved

0x69 Audio ISO/IEC 13818-3
0x6A Visual ISO/IEC 11172-2
0x6B Audio ISO/IEC 11172-3
0x6C Visual ISO/IEC 10918-1
0x6D reserved for registration authority i
0x6E - 0x9F reserved for ISO use
0xA0 - 0xBF reserved for registration authority i
0xC0 - 0xE0 user private
0xE1 reserved for registration authority i
0xE2 - 0xFE user private
0xFF no object type specified h
a This type is used for all 14496-1 streams unless specifically indicated to the contrary. Scene
Description scenes, which are identified with StreamType=0x03, using this object type value shall use the
BIFSConfig specified in ISO/IEC 14496-11.
b This object type shall be used, with StreamType=0x03, for Scene Description streams that use the
BIFSv2Config specified in ISO/IEC 14496-11. Its use with other StreamTypes is reserved.
c This object type shall be used, with StreamType=0x03, for Scene Description streams that use the
BIFSConfigEx specified in subclause 7.2.6.7 of this specification. Its use with other StreamTypes is
reserved.
d This object type shall be used, with StreamType=0x03, for Scene Description streams that use the
AFXConfig specified in subclause 7.2.6.7 of this specification. Its use with other StreamTypes is
reserved.
e Includes associated Amendment(s) and Corrigendum(a). The actual object types are defined in
ISO/IEC 14496-2 and are conveyed in the DecoderSpecificInfo as specified in ISO/IEC 14496-2, Annex
K.
f Includes associated Amendment(s) and Corrigendum(a). The actual object types are defined in ITU-
T Recommendation H.264 | ISO/IEC 14496-10 and are conveyed in the DecoderSpecificInfo as specified
in this amendment, subclause I.2.
g Includes associated Amendment(s) and Corrigendum(a). The actual object types are defined in
ISO/IEC 14496-3 and are conveyed in the DecoderSpecificInfo as specified in ISO/IEC 14496-3 subpart
1 subclause 6.2.1.
h Streams with this value with a StreamType indicating a systems stream (values 1,2,3, 6, 7, 8, 9)
shall be treated as if the ObjectTypeIndication had been set to 0x01.
i The latest entries registered can be found at http://mp4ra.apple.com/object.html.

When the objectTypeIndication value is 0x6C (Visual ISO/IEC 10918-1, which is JPEG) the stream may contain one or
more Access Units, where one Access Unit is defined to be a complete JPEG (as defined in Visual ISO/IEC 10918-1).
Note, that that timing and other Access Unit and packetization information is to be carried in the transport layer such as
the MPEG-4 Sync Layer.

streamType – conveys the type of this elementary stream as per Table 6.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 37

Table 6 — streamType Values
streamType value Stream type description
0x00 Forbidden
0x01 ObjectDescriptorStream (see 7.2.5)
0x02 ClockReferenceStream (see 7.3.2.5)
0x03 SceneDescriptionStream (see ISO/IEC 14496-

11)
0x04 VisualStream
0x05 AudioStream
0x06 MPEG7Stream
0x07 IPMPStream (see 7.2.3.2)
0x08 ObjectContentInfoStream (see 7.2.4.2)
0x09 MPEGJStream
0x0A Interaction Stream
0x0B IPMPToolStream (see [14496-13])
0x0C - 0x1F reserved for ISO use
0x20 - 0x3F user private

upStream – indicates that this stream is used for upstream information.

bufferSizeDB – is the size of the decoding buffer for this elementary stream in byte.

maxBitrate – is the maximum bitrate in bits per second of this elementary stream in any time window of one second
duration.

avgBitrate – is the average bitrate in bits per second of this elementary stream. For streams with variable bitrate this
value shall be set to zero.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 7.2.6.7.

ProfileLevelIndicationIndexDescr [0..255] – an array of unique identifiers for a set of profile and level
indications as carried in the ExtensionProfileLevelDescr defined in subclause 7.2.6.19.

7.2.6.7 DecoderSpecificInfo

7.2.6.7.1 Syntax

abstract class DecoderSpecificInfo extends BaseDescriptor : bit(8) tag=DecSpecificInfoTag
{
 // empty. To be filled by classes extending this class.
}

7.2.6.7.2 Semantics

The decoder specific information constitutes an opaque container with information for a specific media decoder. The
existence and semantics of decoder specific information depends on the values of
DecoderConfigDescriptor.streamType and DecoderConfigDescriptor.objectTypeIndication.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in section 1, subclause 1.6 of that
part.

ISO/IEC 14496-1:2004(E)

38 © ISO/IEC 2004 — All rights reserved

For values of DecoderConfigDescriptor.objectTypeIndication that refer to scene description streams the
semantics of decoder specific information is defined in ISO/IEC 14496-11.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of an „adif_header()“ and an access unit is a
„raw_data_block()“ as defined in ISO/IEC 13818-7.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 11172-3 or ISO/IEC 13818-3 the decoder specific information is empty since all necessary data is contained in
the bitstream frames itself. The access units in this case are the „frame()“ bitstream element as is defined in
ISO/IEC 11172-3.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 10918-1, the decoder specific information is:

class JPEG_DecoderConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
 int(16) headerLength;
 int(16) Xdensity;
 int(16) Ydensity;
 int(8) numComponents;
}

with

headerLength –indicates the number of bytes to skip from the beginning of the stream to find the first pixel of the image.

Xdensity and Ydensity – specify the pixel aspect ratio.

numComponents – indicates whether the image has Y component only or is Y, Cr, Cb. It shall be equal to 1 or 3.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to interaction streams, the decoder
specific information is:

class UIConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
 bit(8) deviceNamelength;
 bit(8) deviceName[deviceNamelength];
 bit(8) devSpecInfo[sizeOfInstance – deviceNamelength - 1];
}

with

deviceNameLength –indicates the number of bytes in the deviceName field

deviceName –indicates the name of the class of device, which allows the terminal to invoke the appropriate interaction
decoder.

devSpecInfo –is a opaque container with information for a device specific handler.

For values of DecoderConfigDescriptor.objectTypeIndication that refers to extended BIFS configuration
(0x04), the decoder specific information is:

class BIFSConfigEx extends DecoderSpecificInfo : bit (8) tag = DecSpecificInfoTag
{
 ExtendedBIFSConfig extBIFSConfig;
}

abstract aligned(8) expandable (..) class ExtendedBIFSConfig : bit (8) tag = 0x01..0xFF {
 //empty. To be filled by classes extending this class.
}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 39

The class BIFSConfigEx contains an ExtendedBIFSConfig. ExtendedBIFSConfig is the base class for new
classes ment to hold decoder specific info. With this approach, new BIFS streams will have streamType 3 and
objectTypeIndication 3, but will use decoder configuration depending on the tag of the ExtendedBIFSConfig.

For values of DecoderConfigDescriptor.objectTypeIndication that refers to AFX streams (0x05), the decoder
specific information is:

class AFXConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
 AFXExtDescriptor afxext;
}

abstract class AFXExtDescriptor extends BaseDescriptor : bit(8) tag = 0..100
{
}

AFXExtDescriptor is an abstract class used as a placeholder for an optional DecoderSpecificInfo defined in table
"DecoderSpecificInfo for AFX streams" in ISO/IEC 14496-16. The tag refers to a specific node compression scheme as
defined in table "AFX object code" in ISO/IEC 14496-16.

7.2.6.8 SLConfigDescriptor

This descriptor defines the configuration of the sync layer header for this elementary stream. The specification of this
descriptor is provided together with the specification of the sync layer in 7.3.2.3.

7.2.6.9 IP_IdentificationDataSet

7.2.6.9.1 Syntax

abstract class IP_IdentificationDataSet extends BaseDescriptor
 : bit(8) tag=ContentIdentDescrTag..SupplContentIdentDescrTag
{
 // empty. To be filled by classes extending this class.
}

7.2.6.9.2 Semantics

This class is an abstract base class that is extended by the descriptor classes that implement IP identification. A descriptor
that allows to aggregate classes of type IP_IdentificationDataSet may actually aggregate any of the classes that extend
IP_IdentificationDataSet.

7.2.6.10 ContentIdentificationDescriptor

7.2.6.10.1 Syntax

class ContentIdentificationDescriptor extends IP_IdentificationDataSet
 : bit(8) tag=ContentIdentDescrTag
{
 const bit(2) compatibility=0;
 bit(1) contentTypeFlag;
 bit(1) contentIdentifierFlag;
 bit(1) protectedContent;
 bit(3) reserved = 0b111;
 if (contentTypeFlag)
 bit(8) contentType;
 if (contentIdentifierFlag) {
 bit(8) contentIdentifierType;
 bit(8) contentIdentifier[sizeOfInstance-2-contentTypeFlag];
 }
}

ISO/IEC 14496-1:2004(E)

40 © ISO/IEC 2004 — All rights reserved

7.2.6.10.2 Semantics

The content identification descriptor is used to identify content. All types of elementary streams carrying content can be
identified using this mechanism. The content types include audio, visual and scene description data. Multiple content
identification descriptors may be associated to one elementary stream. These descriptors shall never be detached from
the ES_Descriptor.

compatibility – must be set to 0.

contentTypeFlag – flag to indicate if a definition of the type of content is available.

contentIdentifierFlag – flag to indicate presence of creation ID.

protectedContent - if set to one indicates that the elementary streams that refer to this IP_IdentificationDataSet are
protected by a method outside the scope of ISO/IEC 14496. The behavior of the terminal compliant with the
ISO/IEC 14496 specifications when processing such streams is undefined.

contentType – defines the type of content using one of the values specified in Table 7.

Table 7 — contentType Values
0 Audio-visual
1 Book
2 Serial
3 Text
4 Item or Contribution (e.g. article in book or serial)
5 Sheet music
6 Sound recording or music video
7 Still Picture
8 Musical Work
9-254 Reserved for ISO use
255 Others

contentIdentifierType – defines a type of content identifier using one of the values specified in Table 8.

Table 8 — contentIdentifierType Values

0 ISAN International Standard Audio-Visual Number
1 ISBN International Standard Book Number
2 ISSN International Standard Serial Number
3 SICI Serial Item and Contribution Identifier
4 BICI Book Item and Component Identifier
5 ISMN International Standard Music Number
6 ISRC International Standard Recording Code
7 ISWC-T International Standard Work Code (Tunes)
8 ISWC-L International Standard Work Code (Literature)
9 SPIFF Still Picture ID
10 DOI Digital Object Identifier
11-255 Reserved for ISO use

contentIdentifier – international code identifying the content according to the preceding
contentIdentifierType.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 41

7.2.6.11 SupplementaryContentIdentificationDescriptor

7.2.6.11.1 Syntax

class SupplementaryContentIdentificationDescriptor extends
 IP_IdentificationDataSet : bit(8) tag= SupplContentIdentDescrTag
{
 bit(24) languageCode;
 bit(8) supplContentIdentifierTitleLength;
 bit(8) supplContentIdentifierTitle[supplContentIdentifierTitleLength];
 bit(8) supplContentIdentifierValueLength;
 bit(8) supplContentIdentifierValue[supplContentIdentifierValueLength];
}

7.2.6.11.2 Semantics

The supplementary content identification descriptor is used to provide extensible identifiers for content that are qualified by
a language code. Multiple supplementary content identification descriptors may be associated to one elementary stream.
These descriptors shall never be detached from the ES_Descriptor.

language code – This 24 bits field contains the ISO 639-2:1998 bibliographic three character language code of the
language of the following text fields.

supplementaryContentIdentifierTitleLength – indicates the length of the subsequent
supplementaryContentIdentifierTitle in bytes.

supplementaryContentIdentifierTitle – identifies the title of a supplementary content identifier that may be used
when a numeric content identifier (see 7.2.6.11) is not available.

supplementaryContentIdentifierValueLength – indicates the length of the subsequent
supplementaryContentIdentifierValue in bytes.

supplementaryContentIdentifierValue – identifies the value of a supplementary content identifer associated to
the preceding supplementaryContentIdentifierTitle.

7.2.6.12 IPI_DescrPointer

7.2.6.12.1 Syntax

class IPI_DescrPointer extends BaseDescriptor : bit(8) tag=IPI_DescrPointerTag {
 bit(16) IPI_ES_Id;
}

7.2.6.12.2 Semantics

The IPI_DescrPointer class contains a reference to the elementary stream that includes the
IP_IdentificationDataSets that are valid for this stream. This indirect reference mechanism allows to convey such
descriptors only in one elementary stream while making references to it from any ES_Descriptor that shares the same
information.

ES_Descriptors for elementary streams that are intended to be accessible regardless of the availability of a referred
stream shall explicitly include their IP_IdentificationDataSets instead of using an IPI_DescrPointer.

IPI_ES_Id – the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information valid for this
elementary stream. If the ES_Descriptor for IPI_ES_Id is not available, the IPI status of this elementary stream is
undefined.

ISO/IEC 14496-1:2004(E)

42 © ISO/IEC 2004 — All rights reserved

7.2.6.13 IPMP_DescriptorPointer

7.2.6.13.1 Syntax

class IPMP_DescriptorPointer extends BaseDescriptor :
bit(8) tag = IPMP_DescrPtrTag
{
 bit(8) IPMP_DescriptorID;
 if (IPMP_DescriptorID == 0xff){
 bit(16) IPMP_DescriptorIDEx;
 bit(16) IPMP_ES_ID;
 }
}

7.2.6.13.2 Semantics

The IPMP_DescriptorPointer appears in the ipmpDescPtr section of an OD or ESD structures.

The presence of this descriptor in an object descriptor indicates that all streams referred to by embedded
ES_Descriptors are subject to protection and management by the IPMP System or IPMP Tool specified in the
referenced IPMP_Descriptor.

The presence of this descriptor in an ES_Descriptor indicates that the stream associated with this descriptor is subject
to protection and management by the IPMP System or IPMP Tool specified in the referenced IPMP_Descriptor.

The IPMP_DescriptorPointer supports the ability to identify which specific IPMP stream or streams the IPMP tools
declared in the corresponding IPMP_Descriptor, identified by the IPMP_DescriptorIDEx, wish to receive. Multiple
IPMP tools may receive updates from the same stream.

IPMP_DescriptorID is the ID of the IPMP_Descriptor being referred to. The bit(8) field is to support backward
compatibility, for which support for extended IPMP stream association is not provided for.

IPMP_DescriptorIDEx is the ID of the IPMP_Descriptor being referred to. The bit(16) field refers to extension
defined IPMP_Descriptors and also supporting the extended IPMP stream association.

IPMP_ES_ID is the id of an IPMP stream that may carry messages intended to the tool pointed to by
IPMP_DescriptorIDEx. In case more than one IPMP stream is needed to feed the IPMP tool, several
IPMP_DescriptorPointer can be given with the same IPMP_DescriptorIDEx and different IPMP_ES_ID. If the
IPMP_ES_ID is null, it means the IPMP tool does not require an IPMP stream. A value of 2^16-1 for IPMP_ES_ID
indicates that this field should be ignored, meaning that the tool pointed to by IPMP_DescriptorIDEx may receive
messages from any IPMP stream within the presentation.

The list of IPMP streams identified by occurrences of the IPMP_ES_ID field (with a value different than 2^16-1) for a
single IPMP_DescriptorIDEx is exhaustive: the IPMP tool identified by the IPMP_DescriptorIDEx may not receive
messages from any other IPMP streams than the ones identified in this list. In order to facilitate editing, the
IPMP_DescriptorPointer must be modified when stored in a file: the IPMP_ES_ID field must be replaced with the
corresponding index in the OD track’s ‘mpod’ table as defined in ISO/IEC 14496-14.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 43

7.2.6.14 IPMP Descriptor

7.2.6.14.1 Syntax

class IPMP_Descriptor() extends BaseDescriptor : bit(8) tag = IPMP_DescrTag
{
 bit(8) IPMP_DescriptorID;
 unsigned int(16) IPMPS_Type;
 if (IPMP_DescriptorID == 0xFF && IPMPS_Type == 0xFFFF){
 bit(16) IPMP_DescriptorIDEx;
 bit(128) IPMP_ToolID;
 bit(8) controlPointCode;
 if (controlPointCode > 0x00)
 bit(8) sequenceCode;
 IPMP_Data_BaseClass IPMPX_data[];
 }
 else if (IPMPS_Type == 0)
 bit(8) URLString[sizeOfInstance-3];
 else
 bit(8) IPMP_data[sizeOfInstance-3];
}

7.2.6.14.2 Semantics

The IPMP_Descriptor carries IPMP information for one or more IPMP System or IPMP Tool instances. It shall also
contain optional instantiation information for one or more IPMP Tool instances.

 IPMP_Descriptors are conveyed in either initial object descriptors, object descriptors or object descriptor streams via
IPMP_DescriptorUpdate commands. Multiple definitions of the same IPMP_Descriptor within a single
IPMP_DescriptorUpdate command or a single decoder specific information structure for an IPMP stream are not
allowed. The behavior in such a situation is undefined. Note that, however, an IPMP_Descriptor may be
modified/updated through subsequent IPMP_DescriptorUpdate commands received in the OD stream.
IPMP_Descriptors shall be referenced by object descriptors or ES_Descriptors, using
IPMP_DescriptorPointer.

IPMP_DescriptorID - a unique ID for this IPMP_Descriptor within its name scope. Values of “0x00” and “0xFF”
are forbidden in the case of signaling an extension descriptor. The scope of the IPMP_DescriptorID is suggested to be
the same as the OD, or IOD in which is it contained. IPMP_DescriptorID is for use in systems conforming to the
previous definition as well as a signal indicating the use of IPMP_DescriptorIDEx for IPMP extensions.

 Note : Although it is possible to implement an application supporting both the use of IPMP protection schemes defined
through the use of IPMP_Descriptors some of which contain IPMP_DescriptorID and some of which contain
IPMP_DescriptorIDEx to protect separate streams, the behavior of the association of a single stream to both types of
IPMP_Descriptors is undefined.

IPMP_DescriptorIDEx - a unique ID for this IPMP_Descriptor within its name scope. Values of “0x0000” and
“0xFFFF” are forbidden. The scope of the IPMP_DescriptorIDEx is suggested to be the same as the OD, or IOD in
which is it contained.

IPMP_ToolID – the IPMP_ToolID of the IPMP Tool described by this IPMP_Descriptor. A zero, “0” value does not
correspond to an IPMP Tool but is used to indicate the presence of a URL.

URLString[] - contains a UTF-8 encoded URL that shall point to the location of a remote IPMP_Descriptor. If the
IPMPS_Type of this IPMP_Descriptor is 0, another URL is referenced. This process continues until an
IPMP_Descriptor with a non-zero IPMPS_Type is accessed.

controlPointCode – specifies the IPMP control point at which the IPMP Tool resides, and is one of the following
values:

ISO/IEC 14496-1:2004(E)

44 © ISO/IEC 2004 — All rights reserved

controlPointCode Description

0x00 No control point.

0x01 Control Point between the decode buffer and the decoder. This is between
the decode buffer and class loader for MPEG-J streams.

0x02 Control Point between the decoder and the composition buffer.

0x03 Control Point between the composition buffer and the compositor.

0x04 BIFS Tree

0x05-0xDF ISO Reserved

0xE0-0xFE User defined

0xFF Forbidden

Note: The only difference between receiving composition units before the CB and after the CB in the MPEG-4 Systems
decoder model is the order in which the units are received when the associated DTS is different from the CTS; in this case
the decoding order is different from the composition order. For example, suppose that a watermark payload is embedded
in more than a single video frame; if the watermark payload was embedded in decoding order, it has to be extracted
before the CB; instead, if it was embedded in composition order, it has to be extracted after the CB.

Note: For streams of type “0x01”, ObjectDescriptor and of type “0x02”, ClockReferenceStream, only a
controlPointCode of “0x00”, “0x01” or the range “0xE0-0xFE” are meaningful.

sequenceCode - The higher the sequence code, the higher the sequencing priority of the IPMP Tool instance at the given
control point. Thus the tool with the highest sequenceCode for a given control point on a given stream shall process data
first for that control point for that stream. Two tools shall not have the same sequence number at the same control point for
the same stream.

IPMPX_data - The IPMP data that is extended from IPMP_Data_BaseClass, for the given IPMP tool.

IPMP_data – Data of unspecified format.

7.2.6.14.3 IPMP Tool List Specification

For each tool, this includes

1. IPMP Tool Identifier

2. Optional Parametric Description of the Tool.

3. Alternative Tools to the given Tool, any one of which replace the others without loss of functionality.

The Tool List shall be in the IOD, in an IPMP_ToolListDescriptor. Binary IPMP Tools are carried in separate
elementary streams associated with the IOD. The specification of the syntax for the Tool List is as follows.

The IPMP_ToolListDescriptor conveys the list of IPMP tools required to access the content associated with the
InitialObjectDescriptor in which it is described, and may include a list of alternate IPMP tools or parametric
descriptions of tools required to access the content.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 45

7.2.6.14.3.1 IPMP_ToolListDescriptor

This subclause defines syntax and semantics for the carriage of a list of IPMP Tools required for the processing of the
presentation.

7.2.6.14.3.1.1 Syntax

class IPMP_ToolListDescriptor extends BaseDescriptor :
 bit(8) tag= IPMP_ToolsListDescrTag
{
 IPMP_Tool ipmpTool[0 .. 255];
}

7.2.6.14.3.1.2 Semantics

IPMP_Tool – a class describing a logical IPMP Tool required to access the content.

7.2.6.14.3.2 IPMP_Tool

The IPMP Tool Identifier (or IPMP_ToolID) is 128-bits long, and shall contain a unique identification number for the IPMP
Tool. A registration authority for IPMP Tools that use a unique ID is required. The registration authority shall maintain an
optional association of the download URLs for various implementations of the given tool for various platforms. These
platforms will be described to adequate detail using a structured representation. The IPMP_ToolID identifies a specific
IPMP Tool (not a specific implementation of such a tool), unless in the reserved range for parametrically defined tools.
Currently assigned 16-bit IPMPS_Types shall be directly mapped to a 128-bit ID by prepending with 112 zero bits; the RA
will be initialized with such values. Specific values within this 128-bit space are reserved for indicating parametric tools, the
bitstream, the terminal, and other special addresses. These values shall not be assigned to registered Tools.

Table 9 — Values of IPMP_ToolID

IPMP_ToolID Semantics

0x0000 Forbidden

0x0001 Content

0x0002 Terminal

0x0003 - 0x2000 Reserved for ISO use

0x2001 - 0xFFFF Carry over from 14496-1 RA

0x10000 - 0x100FF Parametric Tools or Alternative Tools

0x100FF – 2^128-2 Open for registration

2^128-1 Forbidden

7.2.6.14.3.2.1 Syntax

class IPMP_Tool extends BaseDescriptor :
 bit(8) tag= IPMP_ToolTag
{
 bit(128) IPMP_ToolID;
 bit(1) isAltGroup;
 bit(1) isParametric;
 const bit(6) reserved=0b0000.00;

ISO/IEC 14496-1:2004(E)

46 © ISO/IEC 2004 — All rights reserved

 if(isAltGroup){
 bit(8) numAlternates;
 bit(128) specificToolID[numAlternates];
 }
 if(isParametric)
 IPMP_ParamtericDescription toolParamDesc;
 ByteArray ToolURL[];
}

7.2.6.14.3.2.2 Semantics

Each instance of Class IPMP_Tool identifies one IPMP Tool that is required by the Terminal to Consume the Content.
This Tool shall be specified either as a unique implementation, as one of a list of alternatives, or through a parametric
description.

A unique implementation is indicated by the isAltGroup and isParametric fields both set to zero. In this case, the
IPMP_ToolID shall be from the range reserved for specific implementations of an IPMP Tool and shall directly indicate
the required Tool.

In all other cases, the IPMP_ToolID serves as a Content-specific abstraction for an IPMP Tool ID since the actual IPMP
Tool ID of the Tool is not known at the time of authoring the Content, and will depend on the Terminal implementation at a
given time for a given piece of Content.

A parametric description is indicated by setting the isParametric field to one. In this case, the Terminal shall select an
IPMP Tool that meets the criteria specified in the following parametric description. In this case, the IPMP_ToolID shall be
from the range reserved for Parametric Tools or Alternative Tools. The actual IPMP Tool ID of the Tool that the terminal
implementation selects to fulfill this parametric description is known only to the Terminal. All the Content, and other tools,
will refer to this Tool, for this Content, via the IPMP_ToolID specified. Note, this is not for message addressing.

A list of alternative Tools is indicated by setting the isAltGroup flag to ”1”. The subsequent specific Tool IDs indicate the
Tools that are equivalent alternatives to each other. If the isParametric field is also set to one, any Tool that is selected
under the conditions for parametric tools (as discussed in the paragraph above) shall be considered by the Terminal to be
another equivalent alternative to those specified via specific Tool IDs. The Terminal shall choose one from these
equivalent alternatives at its discretion. The actual IPMP Tool ID of this Tool is known only to the Terminal.

IPMP_ToolID – the identifier of the IPMP Tool, as discussed above.

isAltGroup – if set to one, this IPMP_Tool contains a list of alternate IPMP Tools.

numAlternates – the number of alternative IPMP Tools specified in IPMP_Tool.

specificToolID – an array of the IDs of specific alternative IPMP Tools that can allow consumption of the content.

isParametric – IPMP_Tool contains a parametric description of an IPMP Tool. In this case, IPMP_ToolID is an
identifier for the parametrically described IPMP Tool, and the Terminal shall route information specified in the bitstream for
IPMP_ToolID to the specific IPMP Tool instantiated by the terminal.

ToolURL – An array of informative URLs from which one or more tools specified in IPMP_Tool may be obtained in a
manner defined outside the scope of these specifications.

7.2.6.14.3.3 IPMP_ParametricDescription

Using a parametric description, the content provider can now describe what type of IPMP tool is required to playback the
content, instead of using fixed tool IDs. For example, the content provider can specify that an AES tool, with block size of
128 bits is required to decrypt video stream. The IPMP terminal, upon receiving such description specifying this tool, can then
choose an optimised AES tool from the embedded tools.

This subclause contains an illustration of the hierarchy that a parametric description would follow. It does not attempt to
define any specific scheme for any specific Tool type. We anticipate that only a basic framework will appear in the current
version of the specification, and enhancements to the same will be left for future addendums and/or versions.

1. Optional comment

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 47

2. Version of parametric description syntax
3. Class of Tool

e.g. Decryption, Rights Language Parser
4. Sub-class of Tool

a. e.g. for Decryption: AES, DES, NESSIE etc
b. e.g. for Watermarking: “Panos’s watermarking tool” etc
c. e.g. for Rights Language Parser: “Fred’s Rights Parser”
d. e.g. for Protocol Parser: “Mary’s Protocol Parser”

5. Sub-class-specific information
a. e.g. for DES: number of bits, stream and/or block decipher capability
b. e.g. for Rights Language Parser : version

The parametric description is defined to allow a generic description of any type of IPMP tool, no matter the type of tool.

7.2.6.14.3.3.1 Syntax

class IPMP_ParamtericDescription extends IPMP_Data_BaseClass:
bit(8) tag = IPMP_ParamtericDescription_tag = 0x10
{
 ByteArray descriptionComment;
 bit(8) majorVersion;
 bit(8) minorVersion;
 bit(32) numOfDescriptions;
 For (int i = 0; i<numOfDescriptions; i++){
 ByteArray class;
 ByteArray subClass;
 ByteArray typeData;
 ByteArray type;
 ByteArray addedData;
 }
}

7.2.6.14.3.3.2 Semantics

class - class of the parametrically described tool, for example, decryption.

subClass - sub-class of the parametrically described tool, for example, AES under decryption class.

typeData - specific type data to describe a particular type of tool, for example, Block_length, to further specify a AES
decryption tool.

type - value of the type data above, for example, 128 for the Block_length.

addedData - Any additional data which may help to further describe the parametrically defined tool.

7.2.6.14.3.4 ByteArray

This subclause defines syntax and semantics to carry a generic string or array of bytes which is used extensively
throughout the IPMP specifications.

7.2.6.14.3.4.1 Syntax

expandable class ByteArray
{
 bit(8) data[sizeOfInstance()];
}

7.2.6.14.3.4.2 Semantics

data - the string or array of bytes carried.

ISO/IEC 14496-1:2004(E)

48 © ISO/IEC 2004 — All rights reserved

7.2.6.14.4 Implementation of a Registration Authority (RA)

CISAC will serve as the JTC 1 Registration Authority for the IPMPS_Type as defined in this subclause. The Registration
Authority shall execute its duties in compliance with Annex E of the JTC 1 Directives. The registered IPMPS_Type is
hereafter referred to as the Registered Identifier (RID).

The Registration Management Group (RMG) will review appeals filed by organizations whose request for an RID to be
used in conjunction with ISO/IEC 14496 has been denied by the Registration Authority.

Annex B provides information on the procedure for registering a unique IPMPS_Type value.

7.2.6.15 QoS_Descriptor

7.2.6.15.1 Syntax

class QoS_Descriptor extends BaseDescriptor : bit(8) tag=QoS_DescrTag {
 bit(8) predefined;
 if (predefined==0) {
 QoS_Qualifier qualifiers[];
 }
}

7.2.6.15.2 Semantics

The QoS_descriptor conveys the requirements that the ES has on the transport channel and a description of the traffic
that this ES will generate. A set of predefined values is to be determined; customized values can be used by setting the
predefined field to 0.

predefined – a value different from zero indicates a predefined QoS profile according toTable 10.

Table 10 — Predefined QoS Profiles

predefined value description
0x00 Custom
0x01 - 0xff Reserved

qualifier – an array of one or more QoS_Qualifiers.

7.2.6.15.3 QoS_Qualifier

7.2.6.15.3.1 Syntax

abstract aligned(8) expandable(228-1) class QoS_Qualifier : bit(8) tag=0x01..0xff {
 // empty. To be filled by classes extending this class.
}

class QoS_Qualifier_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x01 {
 unsigned int(32) MAX_DELAY;
}

class QoS_Qualifier_PREF_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x02 {
 unsigned int(32) PREF_MAX_DELAY;
}

class QoS_Qualifier_LOSS_PROB extends QoS_Qualifier : bit(8) tag=0x03 {
 double(32) LOSS_PROB;
}

class QoS_Qualifier_MAX_GAP_LOSS extends QoS_Qualifier : bit(8) tag=0x04 {
 unsigned int(32) MAX_GAP_LOSS;
}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 49

class QoS_Qualifier_MAX_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x41 {
 unsigned int(32) MAX_AU_SIZE;
}

class QoS_Qualifier_AVG_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x42 {
 unsigned int(32) AVG_AU_SIZE;
}

class QoS_Qualifier_MAX_AU_RATE extends QoS_Qualifier : bit(8) tag=0x43 {
 unsigned int(32) MAX_AU_RATE;
}

class QoS_Qualifier_REBUFFERING_RATIO extends QoS_Qualifier : bit(8) tag=0x44 {
 bit(8) REBUFFERING_RATIO;
}

7.2.6.15.3.2 Semantics

QoS qualifiers are defined as derived classes from the abstract QoS_Qualifier class. They are identified by means of
their class tag. Unused tag values up to and including 0x7F are reserved for ISO use. Tag values from 0x80 up to and
including 0xFE are user private. Tag values 0x00 and 0xFF are forbidden.

MAX_DELAY – Maximum end to end delay for the stream in microseconds.

PREF_MAX_DELAY – Preferred end to end delay for the stream in microseconds.

LOSS_PROB – Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.

MAX_GAP_LOSS – Maximum allowable number of consecutively lost AUs.

MAX_AU_SIZE – Maximum size of an AU in bytes.

AVG_AU_SIZE – Average size of an AU in bytes.

MAX_AU_RATE – Maximum arrival rate of AUs in AUs/second.

REBUFFERING_RATIO – Ratio of the decoding buffer that should be filled in case of prebuffering or rebuffering. The ratio
is expressed in percentage, with an integer value between 0 and 100. Values outside that range are reserved.

7.2.6.15.3.2.1 Rebuffering

In certain scenarios the System Decoder Model cannot be strictly observed. This is the case of e.g. file retrieval scenarios
in which the data is pulled from a remote server over a network with unpredictable performances. In such a case
prebuffering and/or rebuffering may be required in order to allow for a better quality in the user experience. Note that
scenarios involving real time streaming servers do not fall in this category, since a streaming server presumably delivers
content according to the appropriate timeline.

An elementary stream is prebuffered when the decoder waits until the decodingBuffer has been filled up to a certain
threshold before starting fetching data from it.

An elementary stream is rebuffered when a decoder stops fetching data from the decodingBuffer and before resuming
fetching data waits until that buffer has been filled again up to a certain threshold.

In order to inform a receiver whether a certain elementary stream requires prebuffering and/or rebuffering the
QoS_Qualifier_REBUFFERING_RATIO qualifier can be included in the Elementary Stream Descriptor (see
subclause 7.2.6.15.3.1). By default, in the absence of such qualifier, an elementary stream does not require pre-buffering
or rebuffering.

ISO/IEC 14496-1:2004(E)

50 © ISO/IEC 2004 — All rights reserved

7.2.6.16 ExtensionDescriptor

7.2.6.16.1 Syntax

abstract class ExtensionDescriptor extends BaseDescriptor
: bit(8) tag = ExtDescrTagStartRange .. ExtDescrTagEndRange {
 // empty. To be filled by classes extending this class.
}

7.2.6.16.2 Semantics

This class is an abstract base class that may be extended for defining additional descriptors in future. The available range
of class tag values allow ISO defined extensions as well as private extensions. A descriptor that allows to aggregate
ExtensionDescriptor classes may actually aggregate any of the classes that extend ExtensionDescriptor. Extension
descriptors may be ignored by a terminal that conforms to ISO/IEC 14496-1.

7.2.6.17 RegistrationDescriptor

The registration descriptor provides a method to uniquely and unambiguously identify formats of private data streams.

7.2.6.17.1 Syntax

class RegistrationDescriptor extends BaseDescriptor : bit(8) tag=RegistrationDescrTag {
 bit(32) formatIdentifier;
 bit(8) additionalIdentificationInfo[sizeOfInstance-4];
}

7.2.6.17.2 Semantics

formatIdentifier – is a value obtained from a Registration Authority as designated by ISO.

additionalIdentificationInfo – The meaning of additionalIdentificationInfo, if any, is defined by the
assignee of that formatIdentifier, and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry elementary
streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit ISO/IEC 14496-1 to carry
all types of data streams while providing for a method of unambiguous identification of the characteristics of the underlying
private data streams.

In the following subclause and Annex B, the benefits and responsibilities of all parties to the registration of private data
format are outlined.

7.2.6.17.2.1 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC in
order to identify suitable organizations that will serve as the Registration Authority for the formatIdentifier as defined in this
subclause. The selected organization shall serve as the Registration Authority. The so-named Registration Authority shall
execute its duties in compliance with Annex E of the JTC 1 Directives. The registered private data formatIdentifier is
hereafter referred to as the Registered Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group (RMG)
which will review appeals filed by organizations whose request for an RID to be used in conjunction with ISO/IEC 14496-1
has been denied by the Registration Authority.

Annex B provides information on the procedure for registering a unique format identifier.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 51

7.2.6.18 Object Content Information Descriptors

7.2.6.18.1 Overview

This subclause defines the descriptors that constitute the object content information. These descriptors may either be
included in an OCI_Event in an OCI stream or be part of an object descriptor or ES_Descriptor as defined in 7.2.6.

7.2.6.18.2 OCI_Descriptor Class

7.2.6.18.2.1 Syntax

abstract class OCI_Descriptor extends BaseDescriptor
 : bit(8) tag= OCIDescrTagStartRange .. OCIDescrTagEndRange
{
 // empty. To be filled by classes extending this class.
}

7.2.6.18.2.2 Semantics

This class is an abstract base class that is extended by the classes specified in the subsequent clauses. A descriptor or an
OCI_Event that allows to aggregate classes of type OCI_Descriptor may actually aggregate any of the classes that extend
OCI_Descriptor.

7.2.6.18.3 Content classification descriptor

7.2.6.18.3.1 Syntax

class ContentClassificationDescriptor extends OCI_Descriptor
: bit(8) tag= ContentClassificationDescrTag {

 bit(32) classificationEntity;
 bit(16) classificationTable;
 bit(8) contentClassificationData[sizeOfInstance-6];
}

7.2.6.18.3.2 Semantics

The content classification descriptor provides one or more classifications of the event information. The
classificationEntity field indicates the organization that classifies the content. The possible values have to be
registered with a registration authority to be identified.

classificationEntity – indicates the content classification entity. The values of this field are to be defined by a
registration authority to be identified.

classificationTable – indicates which classification table is being used for the corresponding classification. The
classification is defined by the corresponding classification entity. 0x00 is a reserved value.

contentClassificationData[] – this array contains a classification data set using a non-default classification table.

7.2.6.18.4 Key Word Descriptor

7.2.6.18.4.1 Syntax

class KeyWordDescriptor extends OCI_Descriptor : bit(8) tag=KeyWordDescrTag {
 int i;
 bit(24) languageCode;
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) keyWordCount;
 for (i=0; i<keyWordCount; i++) {
 unsigned int(8) keyWordLength[[i]];

ISO/IEC 14496-1:2004(E)

52 © ISO/IEC 2004 — All rights reserved

 if (isUTF8_string) then {
 bit(8) keyWord[[i]][keyWordLength[i]];
 } else {
 bit(16) keyWord[[i]][keyWordLength[i]];
 }
 }
}

7.2.6.18.4.2 Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that characterize the content. The
choice of the key words is completely free but each time the key word descriptor appears, all the key words given are for
the language indicated in languageCode. This means that, for a certain event, the key word descriptor must appear as
many times as the number of languages for which key words are to be provided.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is two byte
per character.

keyWordCount – indicates the number of key words to be provided.

keyWordLength – specifies the length in characters of each key word.

keyWord[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the key word.

7.2.6.18.5 Rating Descriptor

7.2.6.18.5.1 Syntax

class RatingDescriptor extends OCI_Descriptor : bit(8) tag=RatingDescrTag {
 bit(32) ratingEntity;
 bit(16) ratingCriteria;
 bit(8) ratingInfo[sizeOfInstance-6];
}

7.2.6.18.5.2 Semantics

This descriptor gives one or more ratings, originating from corresponding rating entities, valid for a specified country. The
ratingEntity field indicates the organization which is rating the content. The possible values have to be registered with
a registration authority to be identified. This registration authority shall make the semantics of the rating descriptor publicly
available.

ratingEntity – indicates the rating entity. The values of this field are to be defined by a registration authority to be
identified.

ratingCriteria – indicates which rating criteria are being used for the corresponding rating entity. The value 0x00 is
reserved.

ratingInfo[] – this array contains the rating information.

7.2.6.18.6 Language Descriptor

7.2.6.18.6.1 Syntax

class LanguageDescriptor extends OCI_Descriptor : bit(8) tag=LanguageDescrTag {
 bit(24) languageCode;
}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 53

7.2.6.18.6.2 Semantics

This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the corresponding
audio/speech or text object that is being described.

7.2.6.18.7 Short Textual Descriptor

7.2.6.18.7.1 Syntax

class ShortTextualDescriptor extends OCI_Descriptor : bit(8) tag=ShortTextualDescrTag {
 bit(24) languageCode;
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) nameLength;
 if (isUTF8_string) then {
 bit(8) eventName[nameLength];
 unsigned int(8) textLength;
 bit(8) eventText[textLength];
 } else {
 bit(16) eventName[nameLength];
 unsigned int(8) textLength;
 bit(16) eventText[textLength];
 }
}

7.2.6.18.7.2 Semantics

The short textual descriptor provides the name of the event and a short description of the event in text form.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is two byte
per character.

nameLength – specifies the length in characters of the event name.

eventName[]– a Unicode (ISO/IEC 10646-1) encoded string that specifies the event name.

textLength – specifies the length in characters of the following text describing the event.

eventText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the text description for the event.

7.2.6.18.8 Expanded Textual Descriptor

7.2.6.18.8.1 Syntax

class ExpandedTextualDescriptor extends OCI_Descriptor : bit(8)
tag=ExpandedTextualDescrTag {
 int i;
 bit(24) languageCode;
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) itemCount;
 for (i=0; i<itemCount; i++){
 unsigned int(8) itemDescriptionLength[[i]];
 if (isUTF8_string) then {
 bit(8) itemDescription[[i]][itemDescriptionLength[i];
 } else {
 bit(16) itemDescription[[i]][itemDescriptionLength[i]];
 }

ISO/IEC 14496-1:2004(E)

54 © ISO/IEC 2004 — All rights reserved

 unsigned int(8) itemLength[[i]];
 if (isUTF8_string) then {
 bit(8) itemText[[i]][itemLength[i]];
 } else {
 bit(16) itemText[[i]][itemLength[i]];
 }
 }
 unsigned int(8) textLength;
 int nonItemTextLength=0;
 while(textLength == 255) {
 nonItemTextLength += textLength;
 bit(8) textLength;
 }
 nonItemTextLength += textLength;
 if (isUTF8_string) then {
 bit(8) nonItemText[nonItemTextLength];
 } else {
 bit(16) nonItemText[nonItemTextLength];
 }
}

7.2.6.18.8.2 Semantics

The expanded textual descriptor provides a detailed description of an event, which may be used in addition to, or
independently from, the short event descriptor. In addition to direct text, structured information in terms of pairs of
description and text may be provided. An example application for this structure is to give a cast list, where for example the
item description field might be “Producer” and the item field would give the name of the producer.

languageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is two byte
per character.

itemCount – specifies the number of items to follow (itemised text).

itemDescriptionLength – specifies the length in characters of the item description.

itemDescription[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the item description.

itemLength – specifies the length in characters of the item text.

itemText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the item text.

textLength – specifies the length in characters of the non itemised expanded text. The value 255 is used as an escape
code, and it is followed by another textLength field that contains the length in bytes above 255. For lengths greater than
511 a third field is used, and so on.

nonItemText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the non itemised expanded text.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 55

7.2.6.18.9 Content Creator Name Descriptor

7.2.6.18.9.1 Syntax

class ContentCreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreatorNameDescrTag {

 int i;
 unsigned int(8) contentCreatorCount;
 for (i=0; i<contentCreatorCount; i++){
 bit(24) languageCode[[i]];
 bit(1) isUTF8_string[[i]];
 aligned(8) unsigned int(8) contentCreatorLength[[i]];
 if (isUTF8_string[[i]]) then {
 bit(8) contentCreatorName[[i]][contentCreatorLength[i]];
 } else {
 bit(16) contentCreatorName[[i]][contentCreatorLength[i]];
 }
 }
}

7.2.6.18.9.2 Semantics

The content creator name descriptor indicates the name(s) of the content creator(s). Each content creator name may be in
a different language.

contentCreatorCount – indicates the number of content creator names to be provided.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields. Note that for languages that only use Latin characters, just one byte per character is needed in
Unicode (O/IEC 10646-1).

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is two byte
per character.

contentCreatorLength[[i]] – specifies the length in characters of each content creator name.

contentCreatorName[[i]][] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the content creator name.

7.2.6.18.10 Content Creation Date Descriptor

7.2.6.18.10.1 Syntax

class ContentCreationDateDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreationDateDescrTag {

 bit(40) contentCreationDate;
}

7.2.6.18.10.2 Semantics

This descriptor identifies the date of the content creation.

contentCreationDate – contains the content creation date of the data corresponding to the event in question, in
Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex A). This field is coded as 16 bits giving
the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD). If the
content creation date is undefined all bits of the field are set to 1.

ISO/IEC 14496-1:2004(E)

56 © ISO/IEC 2004 — All rights reserved

7.2.6.18.11 OCI Creator Name Descriptor

7.2.6.18.11.1 Syntax

class OCICreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreatorNameDescrTag {

 int i;
 unsigned int(8) OCICreatorCount;
 for (i=0; i<OCICreatorCount; i++) {
 bit(24) languageCode[[i]];
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) OCICreatorLength[[i]];
 if (isUTF8_string) then {
 bit(8) OCICreatorName[[i]][OCICreatorLength];
 } else {
 bit(16) OCICreatorName[[i]][OCICreatorLength];
 }
 }
}

7.2.6.18.11.2 Semantics

The name of OCI creators descriptor indicates the name(s) of the OCI description creator(s). Each OCI creator name may
be in a different language.

OCICreatorCount – indicates the number of OCI creators.

languageCode[[i]] – contains the ISO 639-2:1998 bibliographic three character language code of the language of the
following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is two byte
per character.

OCICreatorLength[[i]] – specifies the length in characters of each OCI creator name.

OCICreatorName[[i]] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the OCI creator name.

7.2.6.18.12 OCI Creation Date Descriptor

7.2.6.18.12.1 Syntax

class OCICreationDateDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreationDateDescrTag {

 bit(40) OCICreationDate;
}

7.2.6.18.12.2 Semantics

This descriptor identifies the creation date of the OCI description.

OCICreationDate - This 40-bit field contains the OCI creation date for the OCI data corresponding to the event in
question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see subclause Annex A). This field is
coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded
Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

7.2.6.18.13 SMPTE Camera Position Descriptor

7.2.6.18.13.1 Syntax

class SmpteCameraPositionDescriptor extends OCI_Descriptor : bit (8)
tag=SmpteCameraPositionDescrTag {
 unsigned int (8) cameraID;

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 57

 unsigned int (8) parameterCount;
 for (i=0; i<parameterCount; i++) {
 bit (8) parameterID;
 bit (32) parameter;
 }
}

7.2.6.18.13.2 Semantics

The SMPTE metadata descriptor provides metadata defined by the Proposed SMPTE Standard 315M of “camera
positioning information conveyed by ancillary data packets.” The SMPTE 315M defines IDs and data formats for the
following parameters:

 - camera relative position

 - camera pan

 - camera tilt

 - camera roll

 - origin of world coordinate longitude

 - origin of world coordinate latitude

 - origin of world coordinate altitude

 - vertical angle of view

 - focus distance

 - lens opening (iris or F-value)

 - time address information

 - object relative position

cameraID - contains the b(0-7) of C-ID of the UDW in Figure 6.

parameterCount - specifies the number of parameters and is equal to (the Data Count Word (DC) – 18) / 5.

parameterID - contains the b(0-7) of i-th IDn of the UDW.

parameter - contains the i-th Parameter n of the UDW (b(0-7) of each word).

7.2.6.18.13.3 Packet structure defined by SMPTE 315M

Ancillary data packet and space format is defined by ANSI/SMPTE 291M. The SMPTE 315M is one of the registered
formats for a specific application of user data space defined by the 291M. The structure of binary-type camera positioning
data packets described in the SMPTE 315M is illustrated in Figure 6.

Figure 6 — Binary-type camera positioning data packets (SMPTE 315M)

Ancillary data is defined as 10-bit words. B(0-7), b8 and b9 represent actual data, even parity for b(0-7) and not b8
respectively except ADF.

Parameter
1

(4 words)

A
D
F

A
D
F

A
D
F

D
I
D

D
B
N

D
C

F
O
R
M

C
-
I
D

I
D
1

I
D
2

I
D
n

C
S

LABEL
(16 words)

Parameter
2

(4 words)

Parameter
n

(4 words)

UDW

ISO/IEC 14496-1:2004(E)

58 © ISO/IEC 2004 — All rights reserved

ADF: Ancillary Data Flag (000 h, 3ff h, 3ff h)

DID: Data Identification Word (2f0 h)

DBN: Data Block Number Word

DC: Data Count Word

UDW: User Data Words (up to 255 words)

LABEL: SMPTE label for metadata of class “camera positioning information” (16 words)

FORM: Data Type Identification Flag Word (1 word)

C-ID: Camera Identification Word (1 word)

IDn: Parameter Identification Word (1 word for each parameter)

Parameter n: Parameter Data Words (4 words for each parameter)

CS: Checksum Word

The 4 words LABEL(8-11) of LABEL(0-15) shall be set to ‘C’, ‘A’, ‘P’, ‘O’. The Data Type Identification Flag Word (FORM)
indicates the data type of the camera identification word (C-ID), parameter identification word (IDn) and parameter data
word (Parameter n) contained in the packet. In case of binary-type camera positioning data FORM(0-1) shall be set to 0 h.

7.2.6.18.14 Segment Descriptor

7.2.6.18.14.1 Syntax

class SegmentDescriptor extends OCI_Descriptor : bit(8) tag=SegmentDescriptorTag {
 double start;
 double duration;
 bit(8) segmentNameLength;
 bit(8) segmentName [segmentNameLength];
};

7.2.6.18.14.2 Semantics

The segment descriptor defines labeled segments within a media stream with respect to the media time line. A segment
for a given media stream is declared by conveying a segment descriptor with appropriate values as part of the object
descriptor that declares that media stream. Conversely, when a segment descriptor exists in an object descriptor, it refers
to all the media streams in that object descriptor. Segments can be referenced from the scene description through url
fields of media nodes.

In order to use segment descriptors for the declaration of segments within a media stream, the notion of a media time line
needs to be established. The media time line of a media stream may be defined through use of media time descriptor (see
7.2.6.18.15.1). In the absence of such explicit definitions, media time of the first composition unit of a media stream is
assumed to be zero. In applications where random access into a media stream is supported, the media time line is
undefined unless the media time descriptor mechanism is used.

start – specifies the media time (in seconds) of the start of the segment within the media stream.

duration – specifies the duration of the segment in seconds. A negative value denotes an infinite duration.

SegmentNameLength – the length of the segmentName field in characters.

segmentName – a Unicode [3] encoded string that labels the segment. The first character of the segmentName shall be
an alphabetic character. The other characters may be alphanumeric, _, -, or a space character.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 59

7.2.6.18.15 MediaTimeDescriptor

7.2.6.18.15.1 Syntax

class MediaTimeDescriptor extends OCI_Descriptor : bit(8) tag=MediaTimeDescrTag {
 double mediaTimeStamp;
};

7.2.6.18.15.2 Semantics

The media time descriptor conveys a media time stamp. The descriptor establishes the mapping between the object time
base and the media time line of a media stream. This descriptor shall only be conveyed within an OCI stream. The
startingTime, absoluteTimeFlag and duration fields of the OCI event carrying this descriptor shall be set to 0.
The association between the OCI stream and the corresponding media stream is defined by an object descriptor that
aggregates ES descriptors for both of them (see 7.2).

mediaTimeStamp – a time stamp indicating the media time (MT, in seconds) of the associated media stream
corresponding to the composition time (CT) of the access unit conveying the media time descriptor. Media time values
MT(AUn) of other access units of the media stream can be calculated from the composition time CT(AUn) for that access
unit as follows:

MT(AUn) = CT(AUn) – CT + MT

with MT and CT being the mediaTimeStamp and compositionTimeStamp (converted to seconds) values, respectively,
for the access unit conveying the media time descriptor.

Note – When media time descriptor is used to associate a media time line with a media stream, the notion of “media time
zero” does not necessarily correspond to the notion of “beginning of the stream”.

7.2.6.19 Extension Profile Level Descriptor

7.2.6.19.1 Syntax

class ExtensionProfileLevelDescriptor() extends BaseDescriptor : bit(8)
ExtensionProfileLevelDescrTag {
 bit(8) profileLevelIndicationIndex;
 bit(8) ODProfileLevelIndication;
 bit(8) sceneProfileLevelIndication;
 bit(8) audioProfileLevelIndication;
 bit(8) visualProfileLevelIndication;
 bit(8) graphicsProfileLevelIndication;
 bit(8) MPEGJProfileLevelIndication;
}

7.2.6.19.2 Semantics

The ExtensionProfileLevelDescriptor conveys profile and level extension information. This descriptor is used to
signal a profile and level indication set and its unique index and can be extended by ISO to signal any future set of profiles
and levels.

profileLevelIndicationIndex – a unique identifier for the set of profile and level indications described in this
descriptor within the name scope defined by the IOD.

ODProfileLevelIndication – an indication of the profile and level required to process object descriptor streams
associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

sceneProfileLevelIndication – an indication of the profile and level required to process the scene graph nodes
within scene description streams associated with the InitialObjectDescriptor containing this Extension Profile and
Level descriptor.

ISO/IEC 14496-1:2004(E)

60 © ISO/IEC 2004 — All rights reserved

audioProfileLevelIndication – an indication of the profile and level required to process audio streams associated
with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

visualProfileLevelIndication – an indication of the profile and level required to process visual streams
associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

graphicsProfileLevelIndication – an indication of the profile and level required to process graphics nodes within
scene description streams associated with the InitialObjectDescriptor containing this Extension Profile and Level
descriptor.

MPEGJProfileLevelIndication – an indication as defined in Table 11 of the MPEG-J profile and level required to
process the content associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

Table 11 — MPEGJProfileLevelIndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Personal profile L1
0x02 Main profile L1
0x03-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no MPEG-J profile specified -
0xFF no MPEG-J capability required -
Note: Usage of the value 0xFE may indicate that the content described by this
InitialObjectDescriptor does not comply to any conformance point specified in ISO/IEC 14496-1

7.2.6.20 Profile Level Indication Index Descriptor

7.2.6.20.1 Syntax

class ProfileLevelIndicationIndexDescriptor () extends BaseDescriptor
: bit(8) ProfileLevelIndicationIndexDescrTag {
 bit(8) profileLevelIndicationIndex;
}

7.2.6.20.2 Semantics

profileLevelIndicationIndex – a unique identifier for the set of profile and level indications described in this
descriptor within the name scope defined by the IOD.

7.2.7 Rules for Usage of the Object Description Framework

7.2.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor

7.2.7.1.1 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be associated to
a single node of the scene description and that usually relate to a single audio-visual object. The set of streams may
convey a scaleable content representation as well as multiple alternative content representations, e.g., multiple qualities or
different languages. Additional streams with IPMP and object content information may be attached.

These options are described by the ES_Descriptor syntax elements streamDependenceFlag, dependsOn_ES_ID, as
well as streamType. The semantic rules for the aggregation of elementary stream descriptors within one object
descriptor (OD) are specified in this subclause.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 61

7.2.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same streamType of either visualStream, audioStream or
SceneDescriptionStream. However, descriptors for streams with two of these types shall not be mixed within one OD.

7.2.7.1.3 Aggregation of Elementary Streams with Different streamTypes

In the following cases ESs with different streamType may be aggregated:

• An OD may aggregate zero or one additional ES_Descriptor with streamType = ObjectContentInfoStream (see
7.2.4.2). This ObjectContentInfoStream shall be valid for the content conveyed through the other visual, audio or
scene description streams whose descriptors are aggregated in this OD.

• An OD may aggregate zero or one additional ES_Descriptors with streamType = ClockReferenceStream (see
7.3.2.5). This ClockReferenceStream shall be valid for the ES within the name scope that refer to the ES_ID of this
ClockReferenceStream in their SLConfigDescriptor.

• An OD may aggregate zero or more additional ES_Descriptors with streamType = IPMPStream (see 7.2.3.2). This
IPMPStream shall be valid for the content conveyed through the other visual, audio or scene description streams
whose descriptors are aggregated in this OD.

7.2.7.1.4 Aggregation of scene description streams and object descriptor streams

An object descriptor that aggregates one or more ES_Descriptors of streamType = SceneDescriptionStream may
aggregate any number of additional ES_Descriptors with streamType = ObjectDescriptorStream. ES_Descriptors of
streamType = ObjectDescriptorStream shall not be aggregated in object descriptors that do not contain ES_Descriptors
of streamType = SceneDescriptionStream.

This means that scene description and object descriptor streams are always combined within one object descriptor. The
dependencies between these streams are defined in 7.2.7.1.5.2.

7.2.7.1.5 Elementary Stream Dependencies

7.2.7.1.5.1 Independent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream or
SceneDescriptionStream that have streamDependenceFlag=0 refer to independent elementary streams. Such
independent elementary streams shall convey alternative representations of the same content. Only one of these
representations shall be selected for use in the scene.

NOTE — Independent ESs should be ordered within an OD according to the content creator’s preference. The ES that is
first in the list of ES aggregated to one object descriptor should be preferable over an ES that follows later. In case of
audio streams, however, the selection should for obvious reasons be done according to the prefered language of the
receiving terminal.

7.2.7.1.5.2 Dependent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have streamDependenceFlag=1 refer to dependent
elementary streams. The ES_ID of the stream on which the dependent elementary stream depends is indicated by
dependsOn_ES_ID. The ES_Descriptor with this ES_ID shall be aggregated to the same OD. One independent
elementary stream per object descriptor and all its dependent elementary streams may be selected for concurrent use in
the scene.

Stream dependencies are governed by the following rules:

• For dependent ES of streamType equal to either audioStream or visualStream the dependent ES shall have the
same streamType as the ES on which it depends. This implies that the dependent stream contains enhancement
information to the one it depends on. The precise semantic meaning of the dependencies is opaque at this layer.

ISO/IEC 14496-1:2004(E)

62 © ISO/IEC 2004 — All rights reserved

• An ES with a streamType of SceneDescriptionStream shall only depend on an ES with streamType of
SceneDescriptionStream or ObjectDescriptorStream.

 Dependency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contains the object descriptors
that are refered to by this SceneDescriptionStream.

 Dependency on a SceneDescriptionStream implies that the dependent stream contains enhancement information to
the one it depends on. The dependent SceneDescriptionStream shall depend on the same ObjectDescriptorStream
on which the other SceneDescriptionStream depends.

• An ES with a streamType of ObjectDescriptorStream shall only depend on an ES with a streamType of
SceneDescriptionStream. This dependency does not have implications for the object descriptor stream.

 Only if a second stream with streamType of SceneDescriptionStream depends on this stream with streamType =
ObjectDescriptorStream, it implies that the second SceneDescriptionStream depends on the first
SceneDescriptionStream. The object descriptors in the ObjectDescriptorStream shall only be valid for the second
SceneDescriptionStream.

• An ES that flows upstream, as indicated by DecoderConfigDescriptor.upStream = 1 shall always depend
upon another ES that has the upStream flag set to zero. This implies that this upstream is associated to the
downstream it depends on. If the downstream is an ObjectDescriptorStream or SceneDescriptionStream, the
upstream shall be associated to all downstreams specified in that ObjectDescriptorStream or
SceneDescriptionStream.

• The availability of the dependent stream is undefined if an ES_Descriptor for the stream it depends upon is not
available.

7.2.7.2 Linking Scene Description and Object Descriptors

7.2.7.2.1 Associating Object Descriptors to BIFS Nodes

Some BIFS nodes contain an url field. Such nodes are associated to their elementary stream resources (if any) via an
object descriptor. The association is established by means of the objectDescriptorID, as specified in
ISO/IEC 14496-11. The name scope for this ID is specified in 7.2.7.2.4.

Each BIFS node requires a specific streamType (audio, visual, inlined scene description, etc.) for its associated
elementary streams. The associated object descriptor shall contain ES_Descriptors with this streamType. The behavior of
the terminal is undefined if an object descriptor contains ES_Descriptors with stream types that are incompatible with the
associated BIFS node.

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or removal of
BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior of the terminal is
undefined if a BIFS node in the scene description references an object descriptor that is no longer valid.

At times that the object descriptor is not available at the terminal, the terminal shall behave as if the the URL referencing
the object descriptor was empty. In the case of visual streams for which the object descriptor has been deleted, the
terminal shall render the last composition unit in the scene.

7.2.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the primary access
to content compliant with the ISO/IEC 14496 specifications (initial object descriptor) aggregates as a minimum, one scene
description stream and the corresponding object descriptor stream (if additional elementary streams need to be
referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams. This allows a
bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid sequence of access units as
defined in ISO/IEC 14496-11, and 7.2.5.2, respectively. All resulting scene description streams and object descriptor
streams shall remain aggregated in a single object descriptor. The dependency mechanism shall be used to indicate how
the streams depend on each other.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 63

All streams shall continue to be processed by a single scene description and object descriptor decoding process,
respectively. The time stamps of the access units in different streams shall be used to re-establish the original order of
access units.

NOTE — This form of partitioning of the scene description and the object descriptor streams in multiple streams is not
visible in the scene description itself.

7.2.7.2.3 Scene and Object Description in Case of Inline Nodes

The BIFS scene description allows to recursively partition a scene through the use of Inline nodes (see
ISO/IEC 14496-11). Each Inline node is associated to an object descriptor that points to at least one additional scene
description stream as well as another object descriptor stream (if additional elementary streams need to be referenced).
An example for such a hierarchical scene description can be found in 7.2.7.3.8.2.

7.2.7.2.4 Name Scope of Identifiers

The scope of the objectDescriptorID, ES_ID and IPMP_DescriptorID identifiers that label the object descriptors,
elementary stream descriptors and IPMP descriptors, respectively, is defined as follows. This definition is based on the
restriction that associated scene description and object descriptor streams shall always be aggregated in a single object
descriptor, as specified in 7.2.7.1.4. The following rule defines the name scope:

• Two scene related identifiers (objectDescriptorID, nodeID , ROUTEID or protoID) belong to the same name
scope if and only if these identifiers occur in elementary streams with a streamType of either
ObjectDescriptorStream or SceneDescriptionStream that are aggregated in a single initial object descriptor or a single
object descriptor associated to an Inline node.

• Two stream related identifiers (ES_ID or IPMP_DescriptorID) belong to the same name scope if and only if these
identifiers relate to streams that are attached to the same communication session that is established as described in
7.2.7.3.6.

NOTE 1 — Hence, the difference between the two methods specified in 7.2.7.2.2 and 7.2.7.2.3 above to partition a scene
description in multiple streams is that the first method allows multiple scene description streams that refer to the same
name scope while an Inline node opens a new name scope.

NOTE 2 — This implies that a URL in an object descriptor opens a new name scope since it points to an object descriptor
that is not carried in the same ObjectDescriptorStream.

7.2.7.2.5 Reuse of identifiers

Within a single name scope an ES_ID identifier shall always refer to a single instance of an elementary stream.

Note: If two ES_Descriptors within two object descriptors reference a given ES_ID, this means that the second reference
may not receive the stream content from the beginning if the first reference has already started the stream.

For reasons of error resilience, it is recommended not to reuse objectDescriptorID and ES_ID identifiers to identify
more than one object or elementary stream, respectively, within one presentation. That means, if an object descriptor or
elementary stream descriptor is removed by means of an OD command and later on reinstalled with another OD
command, then it shall still point to the same content item as before.

7.2.7.3 ISO/IEC 14496 Content Access

7.2.7.3.1 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such content is
known through means outside the scope of ISO/IEC 14496. The subsequent content access procedure is specified
conceptually, using a number of walk throughs. Its precise definition depends on the chosen delivery layer.

For applications that implement the DMIF Application Interface (DAI) specified in ISO/IEC 14496-6 which abstracts the
delivery layer, a mapping of the conceptual content access procedure to calls of the DAI is specified in 7.2.7.3.9.

ISO/IEC 14496-1:2004(E)

64 © ISO/IEC 2004 — All rights reserved

The content access procedure determines the set of required elementary streams, requests their delivery and associates
them to the scene description. The selection of a subset of elementary streams suitable for a specific ISO/IEC 14496
terminal is possible, either based on profiles or on inspection of the set of object descriptors.

7.2.7.3.2 The Initial Object Descriptor

Initial object descriptors convey information about the profiles required by the terminal compliant with ISO/IEC 14496
specifications to be able to process the described content. This profile information summarizes the complexity of the
content referenced directly or indirectly through this initial object descriptor, i.e., it indicates the overall terminal capabilities
required to decode and present this content. Therefore initial object descriptors constitute self-contained access points to
content compliant with ISO/IEC 14496 specifications.

There are two constraints to this general statement:

• If the includeInlineProfileLevelFlag of the initial object descriptor is not set, the complexity of any inlined
content is not included in the profile indications.

• In addition to the elementary streams that are decodable by the terminal conforming to the indicated profiles, alternate
content representations might be available. This is further explained in 7.2.7.3.4.

An initial object descriptor may be conveyed by means not defined in ISO/IEC 14496. The content may be accessed
starting from the elementary streams that are described by this initial object descriptor, usually one or more scene
description streams and zero or more object descriptor streams.

Content refered to by an initial object descriptor may itself be referenced from another piece of ISO/IEC 14496 content. In
this case, the initial object descriptor will be conveyed in an object descriptor stream and the OD_IDs of both initial object
descriptors and ordinary object descriptors belong to the same name scope.

Ordinary object descriptors may be used as well to describe scene description and object descriptor streams. However,
since they do not carry profile information, they can only be used to access content if that information is either not required
by the terminal or is obtained by other means.

7.2.7.3.3 Usage of URLs in the Object Descriptor Framework

URLs in the object description framework serve to locate either inlined ISO/IEC 14496 content or the elementary stream
data associated to individual audio-visual objects.

URLs in ES_Descriptors locate elementary stream data that shall be delivered as SL-packetized stream by the delivery
entity associated to the current name scope. The complete description of the stream (its ES_Descriptor) is available locally.

URLs in object descriptors locate an object descriptor at a remote location. Only the content of this object descriptor shall
be returned by the delivery entity upon access to this URL. This implies that the description of the resources for the
associated BIFS node or the inlined content is only available at the remote location. Note, however, that depending on the
value of includeInlineProfileLevelFlag in the initial object descriptor, the global resources needed may already
be known (i.e., including remote, inlined portions).

7.2.7.3.4 Selection of Elementary Streams for an Audio-Visual Object

Elementary streams are attached through their object descriptor to appropriate BIFS nodes which, in most cases,
constitute the representation of a single audio-visual object in the scene. The selection of one or more ESs for each BIFS
node may be governed by the profile indications that are conveyed in the initial object descriptor. All object descriptors
shall at least include one elementary stream with suitable object type to satisfy the initially signaled profiles.

Additionally, object descriptors may aggregate ES_Descriptors for elementary streams that require more computing or
bandwidth resources. Those elementary streams may be used by the receiving terminal if it is capable of processing them.

In case initial object descriptors do not indicate any profile and level or if profile and level indications are disregarded, an
alternative to the profile driven selection of streams exists. The receiving terminal may evaluate the ES_Descriptors of all
available elementary streams for each BIFS node and choose by some non-standardized way for which subset it has
sufficient resources to decode them while observing the constraints specified in this subclause.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 65

NOTE — Some restrictions on the selection of and access to elementary streams might exist if a set of elementary
streams shares a single object time base (see 7.3.2.6).

7.2.7.3.5 Content access in “push” and “pull” scenarios

In an interactive, or “pull” scenario, the receiving terminal actively requests the establishment of sessions and the delivery
of content, i.e., streams. This usually involves a session and channel set up protocol between sender and receiver. This
protocol is not specified here. However, the conceptual steps to be performed are the same in all cases and are specified
in the subsequent clauses.

In a broadcast, or “push” scenario, the receiving terminal passively processes what it receives. Instead of issuing requests
for session or channel set up the receiving terminal shall evaluate the relevant descriptive information that associates
ES_IDs to their transport channel. The syntax and semantics of this information is outside the scope of ISO/IEC 14496,
however, it needs to be present in any delivery layer implementation. This allows the terminal to gain access to the
elementary streams forming part of the content.

7.2.7.3.6 Content access through a known Object Descriptor

7.2.7.3.6.1 Pre-conditions

• An object descriptor has been acquired. This may be an initial object descriptor.

• The object descriptor contains ES_Descriptors pointing to object descriptor stream(s) and scene description stream(s)
using ES_IDs.

• A communication session to the source of these streams is established.

• A mechanism exists to open a channel that takes user data as input and provides some returned data as output.

7.2.7.3.6.2 Content Access Procedure

The content access procedure shall be equivalent to the following:

1. The object descriptor is evaluated and the ES_ID for the streams that are to be opened are determined.

2. Requests for opening the selected ESs are made, using a suitable channel set up mechanism with the ES_IDs as
parameter.

3. The channel set up mechanism shall return handles to the streams that correspond to the requested list of ESs.

4. Requests for delivery of the selected ESs are made.

5. Interactive scenarios: Delivery of streams starts. All scenarios: The streams now become accessible.

6. Scene description and object descriptor stream are evaluated.

7. Further streams are opened as needed with the same procedure, starting at step 1.

7.2.7.3.7 Content access through a URL in an Object Desciptor

7.2.7.3.7.1 Pre-conditions

• A URL to an object descriptor or an initial object descriptor has been acquired.

• A mechanism exists to open a communication session that takes a URL as input and provides some
returned data as output.

ISO/IEC 14496-1:2004(E)

66 © ISO/IEC 2004 — All rights reserved

7.2.7.3.7.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A connection to the source of the URL is made, using a suitable service set up call.

2. The service set up call shall return data consisting of a single object descriptor.

3. Continue at step 1 in 7.2.7.3.6.2.

7.2.7.3.8 Content access through a URL in an elementary stream descriptor

7.2.7.3.8.1 Pre-conditions

• An ES_Descriptor pointing to a stream through a URL has been aquired. (Note that the ES_Descriptor fully specifies
the configuration of the stream.)

• A mechanism exists to open a communication session that takes a URL as input and provides some returned data as
output.

• A mechanism exists to open a channel that takes user data as input and provides some returned data as output.

7.2.7.3.8.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A request to open the communication session is made, using a suitable session set up mechanism with the URL as
parameter.

2. The session set up mechanism shall return a handle to the session that corresponds to the requested URL.

3. Request to open the stream is made, using a suitable channel set up mechanism.

4. The channel set up mechanism shall return a handle to the stream that corresponds to the originally requested URL.

5. Requests for delivery of the selected stream are made.

6. Interactive scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessible.

EXAMPLE Access to Complex Content

The example in Figure 7 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The upper part is a
scene accessed through its initial object descriptor. It contains, among others a visual and an audio stream. A second part
of the scene is inlined and accessed through its initial object descriptor that is pointed to (via URL) in the object descriptor
stream of the first scene. Utilization of the initial object descriptor allows the signaling of profile information for the second
scene. Therefore this scene may also be used without the first scene. The second scene contains, among others, a
scaleably encoded visual object and an audio object. A third scene is inlined and accessed via the ES_IDs of its object
descriptor and scene description streams. These ES_IDs are known from an object descriptor conveyed in the object
descriptor stream of the second scene. Note that this third scene is not accessed through an initial object descriptor.
Therefore the profile information for this scene need to be included in the profile information for the second scene.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 67

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Visual Stream

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Object
Descriptor

Object
Descriptor

Initial
Object

Descriptor
URL

Initial
Object

Descriptor
URL

ObjectDescriptorUpdate

ES_DES_D

... ...

......

e.g. Movie
Texture

e.g. Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

InlineInline

Audio Stream

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D
ES_DES_D

ES_DES_D

... ...

......

Audio Stream

Scene Description Stream

Object Descriptor Stream

Scene Description

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D

... ...

......

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

Audio Stream

ES_DES_D

e.g. Movie
Texture

e.g. Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

InlineInline

Figure 7 — Complex content example

ISO/IEC 14496-1:2004(E)

68 © ISO/IEC 2004 — All rights reserved

7.2.7.3.9 Mapping of Content Access Procedure to DAI calls

The following two DAI primitives, quoted from ISO/IEC 14496-6, subclause 10.4, are required to implement the content
access procedure described in 7.2.7.3.6 to 7.2.7.3.8:

DA_ServiceAttach (IN: URL, uuDataInBuffer, uuDataInLen;
OUT: response, serviceSessionId, uuDataOutBuffer, uuDataOutLen)

DA_ChannelAdd (IN: serviceSessionId, loop(qosDescriptor, direction, uuDataInBuffer, uuDataInLen);
OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 7.2.7.3.7.2. The URL shall be passed to the IN: URL parameter.
UuDataInBuffer shall remain empty. The returned serviceSessionId shall be kept for future reference to this URL.
UuDataOutBuffer shall contain a single object descriptor.

DA_ChannelAdd is used to implement steps 0 and 3 of 7.2.7.3.6.2. serviceSessionId shall be the identifier for the service
session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed. QosDescriptor
shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream channels according to
the DecoderConfigDescriptor.upstream flag. UuDataInBuffer shall contain the ES_ID of this ES_Descriptor. On
successful return, channelHandle shall contain a valid, however, not normative handle to the accessible stream.

DA_ChannelAdd is used to implement steps 1 and 2 of 7.2.7.3.8.2. serviceSessionId shall be the identifier for the service
session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed. QosDescriptor
shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream channels according to
the DecoderConfigDescriptor.upstream flag. UuDataInBuffer shall contain the URL of this ES_Descriptor. On
successful return, channelHandle shall contain a valid, however, not normative handle to the accessible stream.

NOTE1 — It is a duty of the service to discriminate between the two cases with either ES_ID or URL as parameters to
uuDataInBuffer in DA_ChannelAdd.

NOTE2 Step 4 in 7.2.7.3.6.2and step 3 in 7.2.7.3.8.2 are currently not mapped to a DAI call in a normative way. It may
be implemented using the DA_UserCommand() primitive.

The set up example in the following figure conveys an initial object descriptor that points to one SceneDescriptionStream,
an optional ObjectDescriptorStream and additional optional SceneDescriptionStreams or ObjectDescriptorStreams. The
first request to the DAI will be a DA_ServiceAttach() with the content address as a parameter. This call will return an initial
object descriptor. The ES_IDs in the contained ES_Descriptors will be used as parameters to a DA_ChannelAdd() that will
return handles to the corresponding channels.

Additional streams (if any) that are identified when processing the content of the object descriptor stream(s) are
subsequently opened using the same procedure. The object descriptor stream is not required to be present if no further
audio- or visual streams or inlined scene description streams form part of the content.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 69

Content Address

Initial
Object
Descriptor

•
•
•

D

A

I

•
•
•

ES_descriptor (optional)
for ObjectDescriptorStream

ES_ID_a

ES_descriptor
for SceneDescriptionStream

ES_descriptor (optional)
for SceneDescriptionStream
or ObjectDescriptorStream

ES_ID_b

ES_ID_x

handle for
ObjectDescriptorStream

handle for
SceneDescriptionStream

handle for
SceneDescriptionStream or
ObjectDescriptorStream

Figure 8 — Requesting stream delivery through the DAI

7.2.8 Usage of the IPMP System interface

7.2.8.1 Overview

IPMP elementary streams and descriptors may be used in a variety of ways. For instance, IPMP elementary streams may
convey time-variant IPMP information such as keys that change periodically. An IPMP elementary stream may be
associated with a given elementary stream or set of elementary streams. Similarly, IPMP descriptors may be used to
convey time-invariant or slowly changing IPMP information associated with a given elementary stream or set of
elementary streams. This subclause specifies methods how to associate an IPMP system to an elementary stream or a
set of elementary streams. ISO/IEC 14496-13 specifies the following IPMP tools related methods:

a. Indicate IPMP Tools required for the processing of a given MPEG-4 presentation.
b. Associate an IPMP Tool to a specified Control Point of an elementary stream or set of elementary

Streams.
c. Perform Mutual Authentication between IPMP Tools and between IPMP Tools and the Terminal.
d. Request the instantiation of one or more IPMP Tools by another IPMP Tool.
e. Request and receive notification of the instantiation of IPMP Tools.
f. Provide a communication channel between IPMP Tools and the User.

7.2.8.2 Association of an IPMP System with IS0/IEC 14496 content

7.2.8.2.1 Association in the initial object descriptor

An IPMP System may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case the initial
object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object descriptor streams one
or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all the elementary
streams that are described through this initial object descriptor are governed by the one or more IPMP Systems that are
identified within the one or more IPMP streams.

ISO/IEC 14496-1:2004(E)

70 © ISO/IEC 2004 — All rights reserved

7.2.8.2.2 Association in other object descriptors

An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary streams one
or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all the content elementary
streams described through this object descriptor are governed by the one or more IPMP Systems that are identified within
the one or more IPMP streams. Note that an ES_Descriptor that describes an IPMP stream may contain references to
IPMP_Descriptors.

The second method is to include one or more IPMP_DescriptorPointers in the object descriptor. This implies that all
content elementary streams described by this object descriptor are governed by the IPMP System(s) that is/are identified
within the referenced IPMP descriptor(s).

The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this object descriptor. This
implies that the elementary stream referenced by such an ES_Descriptor is controlled by an IPMP System.

7.2.8.3 IPMP of Object Descriptor streams

Object Descriptor streams shall not be affected by IPMP Systems, i.e., they shall always be available without protection by
IPMP Systems. However, management may be applied using IPMP Tools.

IPMP_Descriptors, which reference one or more IPMP Tools, may be directly included in an Object Descriptor for use by
elementary streams referenced within the same Object Descriptor.

The scope of the IPMP_Descriptors included and used in this way is limited to only the Object Descriptor itself and the
streams defined by reference within the Object Descriptor and may not be referenced by any subsequent descriptors
which may be included in the streams referenced in the Object Descriptor.

Additionally, IPMP_Tools referenced in this way shall not receive updates either by IPMP Streams or IPMP descriptor
updates.

7.2.8.4 IPMP of Scene Description streams

Scene description streams are treated like any media stream, i.e. they may be managed by an IPMP System.

An IPMP_Descriptor associated with a scene description stream implies that the IPMP System controls this scene
description stream.

There are two ways to protect part of a scene description (or to apply different IPMP Systems to different components of a
given scene):

The first method exploits the fact that it is permissible to have more than one scene description stream associated with
one object descriptor (see 7.2.7.2.2). Such a split of the scene description can be freely designed by a content author, for
example, putting a basic scene description into the first stream and adding one or more additional scene description
streams that enhance this basic scene using BIFS updates.

The second method is to structure the scene using one or more Inline nodes (see ISO/IEC 14496-11). Each Inline
node refers to one or more additional scene description streams, each of which might use a different IPMP System.

7.2.8.5 Usage of URLs in managed and protected content

7.2.8.5.1 URLs in the BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an object
descriptor. Equally, no normative way to apply an IPMP System to such links exists. The behavior of an IPMP-enabled
terminal that encounters such links is undefined.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 71

7.2.8.5.2 URLs in Object Descriptors

URLs in object descriptors point to other remote object descriptors. This merely constitutes an indirection and should not
adversely affect the behavior of the IPMP System that might be invoked through this remote object descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective
actions to guard against this condition are not in the scope of ISO/IEC 14496.

7.2.8.5.3 URLs in ES_Descriptors

URLs in ES descriptors are used to access elementary streams remotely. This merely constitutes an indirection and
therefore does not adversely affect the behavior of the IPMP System that might be invoked through this remote object
descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective
actions to guard against this condition are not in the scope of ISO/IEC 14496.

7.2.8.6 IPMP Decoding Process

Figure 9 — IPMP system in the ISO/IEC 14496 terminal architecture

Figure 9 depicts the injection of IPMP systems or tools with respect to the MPEG-4 terminal. IPMP specific data is
supplied to the IPMP systems or tools via IPMP streams and/or IPMP descriptors, and the IPMP systems or tools releases
protected content after the sync layer.

Each elementary stream under the control of IPMP systems or tools has the conceptual element of a stream flow
controller. Stream flow control can take place between the the SyncLayer decoder and the decoder buffer. As the figure
indicates, elements of IPMP control may take place at other points in the terminal including, after decoding (as with some
watermarking systems) or in the decoded BIFS stream, or after the composition buffers have been written, or in the BIFS
scene tree. Stream flow controllers either enable or disable processing of an elementary stream in a non-normative way
that depends on the status information provided by the IPMP systems or tools.

ISO/IEC 14496-1:2004(E)

72 © ISO/IEC 2004 — All rights reserved

Finally, the IPMP systems or tools must at a minimum:

1. Process the IPMP stream and descriptor

2. Appropriately manage (e.g. decrypt and release) protected elementary streams.

The initialization process of the IPMP systems or tools is not specified except that it shall not unduly delay the content
access process as specified in 7.2.7.3.

7.3 Synchronization of Elementary Streams

7.3.1 Introduction

This subclause defines the tools to maintain temporal synchronisation within and among elementary streams. The
conceptual elements that are required for this purpose, namely time stamps and clock reference information, have already
been introduced in clause 7.1. The syntax and semantics to convey these elements to a receiving terminal are embodied
in the sync layer, specified in 7.3.2. This syntax is configurable to adapt to the needs of different types of elementary
streams. The required configuration information is specified in 7.3.2.3.

On the sync layer, an elementary stream is mapped into a sequence of packets, called an SL-packetized stream (SPS).
Packetization information has to be exchanged between the entity that generates an elementary stream and the sync layer.
This relation may be described by a conceptual elementary stream interface (ESI) between both layers (see clause
Annex G). The ESI is a concept to explain the information flow between layers, however, need not be accessible in an
implementation.

SL-packetized streams are conveyed through a delivery mechanism that is outside the scope of ISO/IEC 14496-1. This
delivery mechanism is only described in terms of the DMIF Application Interface (DAI) whose semantics are specified in
ISO/IEC 14496-6. It specifies the information that needs to be exchanged between the sync layer and the delivery
mechanism. The basic data transport feature that this delivery mechanism shall provide is the framing of the data packets
generated by the sync layer. The DAI is a reference point that need not be accessible in an implementation. The required
properties of the DAI are described in 7.3.3.

The items specified in this clause are depicted in Figure 10 below.

DMIF Application Interface

Elementary Stream Interface

SL-Packetized Streams

Elementary Streams

Sync LayerSL SLSL SL.............

Figure 10 — The Sync Layer

7.3.2 Sync Layer

7.3.2.1 Overview

The sync layer (SL) specifies a syntax for the packetization of elementary streams into access units or parts thereof. Such
a packet is called SL packet. The sequence of SL packets resulting from one elementary stream is called an SL-
packetized stream (SPS). Access units are the only semantic entities at this layer that need to be preserved from end to
end. Their content is opaque. Access units are used as the basic unit for synchronisation.

An SL packet consists of an SL packet header and an SL packet payload. The SL packet header provides means for
continuity checking in case of data loss and carries the coded representation of the time stamps and associated
information. The detailed semantics of the time stamps are specified in 7.1.3 that defines the timing aspects of the

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 73

systems decoder model. The SL packet header is configurable as specified in 7.3.2.3. The SL packet header itself is
specified in 7.3.2.4.

An SL packet does not contain an indication of its length. Therefore, SL packets must be framed by a suitable lower layer
protocol using, e.g., the M4Mux tool specified in 7.4. Consequently, an SL-packetized stream is not a self-contained data
stream that can be stored or decoded without such framing.

An SL-packetized stream does not provide identification of the ES_ID associated to the elementary stream (see 7.2.6.5) in
the SL packet header. This association must be conveyed through a stream map table using the appropriate signalling
means of the delivery mechanism.

7.3.2.2 SL Packet Specification

7.3.2.2.1 Syntax

class SL_Packet (SLConfigDescriptor SL) {
 aligned(8) SL_PacketHeader slPacketHeader(SL);
 aligned(8) SL_PacketPayload slPacketPayload;
}

7.3.2.2.2 Semantics

In order to properly parse an SL_Packet, it is required that the SLConfigDescriptor for the elementary stream to
which the SL_Packet belongs is known, since the SLConfigDescriptor conveys the configuration of the syntax of the
SL packet header.

slPacketHeader – an SL_PacketHeader element as specified in 7.3.2.4.

slPacketPayload – an SL_PacketPayload that contains an opaque payload.

7.3.2.3 SL Packet Header Configuration

7.3.2.3.1 Syntax

class SLConfigDescriptor extends BaseDescriptor : bit(8) tag=SLConfigDescrTag {
 bit(8) predefined;
 if (predefined==0) {
 bit(1) useAccessUnitStartFlag;
 bit(1) useAccessUnitEndFlag;
 bit(1) useRandomAccessPointFlag;
 bit(1) hasRandomAccessUnitsOnlyFlag;
 bit(1) usePaddingFlag;
 bit(1) useTimeStampsFlag;
 bit(1) useIdleFlag;
 bit(1) durationFlag;
 bit(32) timeStampResolution;
 bit(32) OCRResolution;
 bit(8) timeStampLength; // must be ≤ 64
 bit(8) OCRLength; // must be ≤ 64
 bit(8) AU_Length; // must be ≤ 32
 bit(8) instantBitrateLength;
 bit(4) degradationPriorityLength;
 bit(5) AU_seqNumLength; // must be ≤ 16
 bit(5) packetSeqNumLength; // must be ≤ 16
 bit(2) reserved=0b11;
 }
 if (durationFlag) {
 bit(32) timeScale;
 bit(16) accessUnitDuration;
 bit(16) compositionUnitDuration;
 }

ISO/IEC 14496-1:2004(E)

74 © ISO/IEC 2004 — All rights reserved

 if (!useTimeStampsFlag) {
 bit(timeStampLength) startDecodingTimeStamp;
 bit(timeStampLength) startCompositionTimeStamp;
 }
}

class ExtendedSLConfigDescriptor extends SLConfigDescriptor : bit(8)
tag=ExtSLConfigDescrTag {
 SLExtensionDescriptor slextDescr[1..255];
}

7.3.2.3.2 Semantics

The SL packet header may be configured according to the needs of each individual elementary stream. Parameters that
can be selected include the presence, resolution and accuracy of time stamps and clock references. This flexibility allows,
for example, a low bitrate elementary stream to incur very little overhead on SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfigDescriptor, which is part of the associated
ES_Descriptor within an object descriptor.

The configurable parameters in the SL packet header can be divided in two classes: those that apply to each SL packet
(e.g. OCR, sequenceNumber) and those that are strictly related to access units (e.g. time stamps, accessUnitLength,
instantBitrate, degradationPriority).

predefined – allows to default the values from a set of predefined parameter sets as detailed below.

NOTE — This table will be updated by amendments to ISO/IEC 14496 to include predefined configurations as required by
future profiles.

Table 12 — Overview of predefined SLConfigDescriptor values

Predefined field value Description
0x00 Custom
0x01 null SL packet header
0x02 Reserved for use in MP4 files
0x03 – 0xFF Reserved for ISO use

Table 13 — Detailed predefined SLConfigDescriptor values

Predefined field value 0x01 0x02
UseAccessUnitStartFlag 0 0
UseAccessUnitEndFlag 0 0
UseRandomAccessPointFlag 0 0
UsePaddingFlag 0 0
UseTimeStampsFlag 0 1
UseIdleFlag 0 0
DurationFlag 0 0
TimeStampResolution 1000 -
OCRResolution - -
TimeStampLength 32 0
OCRlength - 0
AU_length 0 0
InstantBitrateLength - 0
DegradationPriorityLength 0 0
AU_seqNumLength 0 0
PacketSeqNumLength 0 0

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 75

useAccessUnitStartFlag – indicates that the accessUnitStartFlag is present in each SL packet header of this
elementary stream.

useAccessUnitEndFlag – indicates that the accessUnitEndFlag is present in each SL packet header of this
elementary stream.

If neither useAccessUnitStartFlag nor useAccessUnitEndFlag are set this implies that each SL packet
corresponds to a complete access unit.

useRandomAccessPointFlag – indicates that the RandomAccessPointFlag is present in each SL packet header
of this elementary stream.

hasRandomAccessUnitsOnlyFlag – indicates that each SL packet corresponds to a random access point. In that
case the randomAccessPointFlag need not be used.

usePaddingFlag – indicates that the paddingFlag is present in each SL packet header of this elementary stream.

UseTimeStampsFlag: indicates that time stamps are used for synchronisation of this elementary stream. They are
conveyed in the SL packet headers. Otherwise, the parameters accessUnitDuration, compositionUnitDuration,
startDecodingTimeStamp and startCompositionTime-Stamp conveyed in this SL packet header configuration
shall be used for synchronisation.

NOTE — The use of start time stamps and durations (useTimeStampsFlag=0) may only be feasible under some
conditions, including an error free environment. Random access is not easily possible.

useIdleFlag – indicates that idleFlag is used in this elementary stream.

durationFlag – indicates that the constant duration of access units and composition units for this elementary stream is
subsequently signaled.

timeStampResolution – is the resolution of the time stamps in clock ticks per second.

OCRResolution – is the resolution of the object time base in cycles per second.

timeStampLength – is the length of the time stamp fields in SL packet headers. timeStampLength shall take values
between zero and 64 bit.

OCRlength – is the length of the objectClockReference field in SL packet headers. A length of zero indicates that no
objectClockReferences are present in this elementary stream. If OCRstreamFlag is set, OCRLength shall be zero.
Else OCRlength shall take values between zero and 64 bit.

AU_Length – is the length of the accessUnitLength fields in SL packet headers for this elementary stream.
AU_Length shall take values between zero and 32 bit.

instantBitrateLength – is the length of the instantBitrate field in SL packet headers for this elementary stream.

degradationPriorityLength – is the length of the degradationPriority field in SL packet headers for this
elementary stream.

AU_seqNumLength – is the length of the AU_sequenceNumber field in SL packet headers for this elementary stream.

packetSeqNumLength – is the length of the packetSequenceNumber field in SL packet headers for this elementary
stream.

timeScale – used to express the duration of access units and composition units. One second is evenly divided in
timeScale parts.

accessUnitDuration – the duration of an access unit is accessUnitDuration * 1/timeScale seconds.

ISO/IEC 14496-1:2004(E)

76 © ISO/IEC 2004 — All rights reserved

compositionUnitDuration – the duration of a composition unit is compositionUnitDuration * 1/timeScale
seconds.

startDecodingTimeStamp – conveys the time at which the first access unit of this elementary stream shall be decoded.
It is conveyed in the resolution specified by timeStampResolution.

startCompositionTimeStamp – conveys the time at which the composition unit corresponding to the first access unit
of this elementary stream shall be decoded. It is conveyed in the resolution specified by timeStampResolution.

slextDescr – is an array of ExtensionDescriptors defined for ExtendedSLConfigDescriptor as specified in
7.3.2.3.1.

7.3.2.3.3 SLExtentionDescriptor Syntax

abstract class SLExtensionDescriptor : bit(8) tag=0 {
}

class DependencyPointer extends SLExtensionDescriptor: bit(8) tag= DependencyPointerTag {
 bit(6) reserved;
 bit(1) mode;
 bit(1) hasESID;
 bit(8) dependencyLength;
 if (hasESID)
 {
 bit(16) ESID;
 }
}
class MarkerDescriptor extends SLExtensionDescriptor: bit(8) tag=DependencyMarkerTag {
 int(8) markerLength;
}

7.3.2.3.4 SLExtentionDescriptor Semantics

SLExtensionDescriptor is an abstract class specified so as to be the base class of sl extensions.

7.3.2.3.4.1 DependencyPointer Semantics

DependencyPointer extends SLExtensionDescriptor and specifies that access units from this stream depend on another
stream.

If mode equals 0, the latter stream can be identified through the ESID field or if no ESID is present, using the
dependsOn_ES_ID ESID, and access units from this stream will point to the decodingTimeStamps of that stream.

If mode equals 1, access units from this stream will convey identifiers, for which the system (e.g. IPMP tools) are
responsible to know whether dependent resources (e.g. keys) are available.

In both cases, the length of this pointer or identifier is dependencyLength.

If mode is 0 then dependencyLength shall be the length of the decodingTimeStamp.

7.3.2.3.4.2 MarkerDescriptor Semantics

MarkerDescriptor extends SLExtensionDescriptor and allows to tag access units so as to be able to refer to them
independently from their decodingTimeStamp.

 markerLength – is the length for identifiers tagging access units.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 77

7.3.2.4 SL Packet Header Specification

7.3.2.4.1 Syntax

aligned(8) class SL_PacketHeader (SLConfigDescriptor SL) {
 if (SL.useAccessUnitStartFlag)
 bit(1) accessUnitStartFlag;
 if (SL.useAccessUnitEndFlag)
 bit(1) accessUnitEndFlag;
 if (SL.OCRLength>0)
 bit(1) OCRflag;
 if (SL.useIdleFlag)
 bit(1) idleFlag;
 if (SL.usePaddingFlag)
 bit(1) paddingFlag;
 if (paddingFlag)
 bit(3) paddingBits;

 if (!idleFlag && (!paddingFlag || paddingBits!=0)) {
 if (SL.packetSeqNumLength>0)
 bit(SL.packetSeqNumLength) packetSequenceNumber;
 if (SL.degradationPriorityLength>0)
 bit(1) DegPrioflag;
 if (DegPrioflag)
 bit(SL.degradationPriorityLength) degradationPriority;
 if (OCRflag)
 bit(SL.OCRLength) objectClockReference;

 if (accessUnitStartFlag) {
 if (SL.useRandomAccessPointFlag)
 bit(1) randomAccessPointFlag;
 if (SL.AU_seqNumLength >0)
 bit(SL.AU_seqNumLength) AU_sequenceNumber;
 if (SL.useTimeStampsFlag) {
 bit(1) decodingTimeStampFlag;
 bit(1) compositionTimeStampFlag;
 }
 if (SL.instantBitrateLength>0)
 bit(1) instantBitrateFlag;
 if (decodingTimeStampFlag)
 bit(SL.timeStampLength) decodingTimeStamp;
 if (compositionTimeStampFlag)
 bit(SL.timeStampLength) compositionTimeStamp;
 if (SL.AU_Length > 0)
 bit(SL.AU_Length) accessUnitLength;
 if (instantBitrateFlag)
 bit(SL.instantBitrateLength) instantBitrate;
 }
 if (SL.tag == ExtSLConfigDescrTag)
 {
 for (int i=0; i<SL.slextDescr.length;i++)
 {
 switch(SL.slextDescr[i].tag)
 {
 case DependencyPointerTag:
 Marker(SL.slextDescr[i].dependencyLength) value;
 break;
 case DependencyMarkerTag:
 Marker(SL.slextDescr[i].markerLength) value;
 break;
 default:
 break;
 }
 }
 }
 }
}

ISO/IEC 14496-1:2004(E)

78 © ISO/IEC 2004 — All rights reserved

aligned expandable class Marker(int length) {
 bit(length) value;
}

7.3.2.4.2 Semantics

accessUnitStartFlag – when set to one indicates that the first byte of the payload of this SL packet is the start of an
access unit. If this syntax element is omitted from the SL packet header configuration its default value is known from the
previous SL packet with the following rule:

 accessUnitStartFlag = (previous-SL packet has accessUnitEndFlag==1) ? 1 : 0.

accessUnitEndFlag – when set to one indicates that the last byte of the SL packet payload is the last byte of the
current access unit. If this syntax element is omitted from the SL packet header configuration its default value is only
known after reception of the subsequent SL packet with the following rule:

 accessUnitEndFlag = (subsequent-SL packet has accessUnitStartFlag==1) ? 1 : 0.

If neither AccessUnitStartFlag nor AccessUnitEndFlag are configured into the SL packet header this implies that
each SL packet corresponds to a single access unit, hence both accessUnitStartFlag = accessUnitEndFlag = 1.

NOTE — When the SL packet header is configured to use accessUnitStartFlag but neither accessUnitEndFlag
nore accessUnitLength, it is not guaranteed that the terminal can determine the end of an access unit before the
subsequent one is received.

OCRflag – when set to one indicates that an objectClockReference will follow. The default value for OCRflag is
zero.

idleFlag – indicates that this elementary stream will be idle (i.e., not produce data) for an undetermined period of time.
This flag may be used by the decoder to discriminate between deliberate and erroneous absence of subsequent SL
packets.

paddingFlag – indicates the presence of padding in this SL packet. The default value for paddingFlag is zero.

paddingBits – indicate the mode of padding to be used in this SL packet. The default value for paddingBits is zero.

If paddingFlag is set and paddingBits is zero, this indicates that the subsequent payload of this SL packet consists
of padding bytes only. accessUnitStartFlag, randomAccessPointFlag and OCRflag shall not be set if
paddingFlag is set and paddingBits is zero.

If paddingFlag is set and paddingBits is greater than zero, this indicates that the payload of this SL packet is
followed by paddingBits of zero stuffing bits for byte alignment of the payload.

packetSequenceNumber – if present, it shall be continuously incremented for each SL packet as a modulo counter. A
discontinuity at the decoder corresponds to one or more missing SL packets. In that case, an error shall be signalled to the
sync layer user. If this syntax element is omitted from the SL packet header configuration, continuity checking by the sync
layer cannot be performed for this elementary stream.

Duplication of SL packets: elementary streams that have a sequenceNumber field in their SL packet headers may use
duplication of SL packets for error resilience. The duplicated SL packet(s) shall immediately follow the original. The
packetSequenceNumber of duplicated SL packets shall have the same value and each byte of the original SL packet
shall be duplicated, with the exception of an objectClockReference field, if present, which shall encode a valid value
for the duplicated SL packet.

degPrioFlag - when set to one indicates that degradationPriority is present in this packet.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 79

degradationPriority – indicates the importance of the payload of this SL packet. The streamPriority defines the
base priority of an ES. degradationPriority defines a decrease in priority for this SL packet relative to the base
priority. The priority for this SL packet is given by:

 SL_PacketPriority = streamPriority – degradationPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful degradation
by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer instance. The relative
amount of complexity degradation among SL packets of different elementary streams increases as SL_PacketPriority
decreases.

objectClockReference – contains an Object Clock Reference time stamp. The OTB time value t is reconstructed from
this OCR time stamp according to the following formula:

t = (objectClockReference/SL.OCRResolution)+ k*(2SL.OCRLength/SL.OCRResolution)

where k is the number of times that the objectClockReference counter has wrapped around.

objectClockReference is only present in the SL packet header if OCRflag is set.

NOTE — It is possible to convey just an OCR value and no payload within an SL packet.

The following is the semantics of the syntax elements that are only present at the start of an access unit when explicitly
signaled by accessUnitStartFlag in the bitstream:

randomAccessPointFlag – when set to one indicates that random access to the content of this elementary stream is
possible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is set. If this syntax element is
omitted from the SL packet header configuration, its default value is the value of
SLConfigDescriptor.hasRandomAccessUnitsOnlyFlag for this elementary stream.

AU_sequenceNumber – if present, successive access units shall either have the same sequence number or the value
be continuously incremented as a modulo counter. A discontinuity at the decoder corresponds to one or more missing
access units. In that case, an error shall be signaled to the sync layer user.

Duplication of access units: Access units sent using the same sequence number as the immediately preceding AU
shall be ignored if and only if the second access unit is a random access point. Such a repeated access unit, where the
first did not have RAP set but the repeated one does, allows random access points to be added to a broadcast stream,
permitting clients to enter the stream at defined points during its transmission, whilst not disrupting clients already
receiving the stream. On the other hand, reception of two access units with the same sequence number, when the second
is not a RAP, means that the two access units refer to the same key state of the scene. I.e. the second access unit can be
safely processed by the decoder even if it is known to the decoder that one or more access units that originally existed
between the two were lost on the network.

decodingTimeStampFlag – indicates that a decoding time stamp is present in this packet.

compositionTimeStampFlag – indicates that a composition time stamp is present in this packet.

accessUnitLengthFlag – indicates that the length of this access unit is present in this packet.

instantBitrateFlag – indicates that an instantBitrate is present in this packet.

decodingTimeStamp – is a decoding time stamp as configured in the associated SLConfigDescriptor. The
decoding time td of this access unit is reconstructed from this decoding time stamp according to the formula:

td = (decodingTimeStamp/SL.timeStampResolution + k *
2SL.timeStampLength/SL.timeStampResolution

where k is the number of times that the decodingTimeStamp counter has wrapped around.

ISO/IEC 14496-1:2004(E)

80 © ISO/IEC 2004 — All rights reserved

A decodingTimeStamp shall only be present if the decoding time is different from the composition time for this access
unit.

compositionTimeStamp – is a composition time stamp as configured in the associated SLConfigDescriptor. The
composition time tc of the first composition unit resulting from this access unit is reconstructed from this composition time
stamp according to the formula:

td = (compositionTimeStamp/SL.timeStampResolution + k *
2SL.timeStampLength/SL.timeStampResolution

where k is the number of times that the compositionTimeStamp counter has wrapped around.

accessUnitLength – is the length of the access unit in bytes. If this syntax element is not present or has the value zero,
the length of the access unit is unknown.

instantBitrate – is the instantaneous bit rate in bits per second of this elementary stream until the next
instantBitrate field is found.

If the SLConfigDescriptor is an ExtendedSLConfigDescriptor (i.e. its tag is ExtSLConfigDescrTag), then
descriptors associated with the array of SLExtensionDescriptors are appended to the end of the SLPacket Header.

Note – Since those descriptors conveying the extended SL information; carry their size, they can be skipped by a decoder.

DependencyPointerDescriptor and MarkerDescriptor define their associated descriptors as follows :

For DependencyPointerDescriptor a Marker of length dependencyLength will be encoded. It shall resolve either to an
identifier or to a decodingTimeStamp as specified in 7.3.2.3.4.1.

For MarkerDescriptor a marker of length markerLength is encoded.

7.3.2.5 Clock Reference Stream

An elementary stream of streamType = ClockReferenceStream may be declared by means of the object descriptor. It is
used for the sole purpose of conveying Object Clock Reference time stamps. Multiple elementary streams in a name
scope may make reference to such a ClockReferenceStream by means of the OCR_ES_ID syntax element in the
SLConfigDescriptor to avoid redundant transmission of Clock Reference information. Note, however, that circular
references between elementary streams using OCR_ES_ID are not permitted.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-packetized
stream such that only OCR values of the required OCRresolution and OCRlength are present in the SL packet
header.

There shall not be any SL packet payload present in an SL-packetized stream of streamType = ClockReferenceStream.

In the DecoderConfigDescriptor for a clock reference stream ObjectTypeIndication shall be set to '0xFF',
hasRandomAccessUnitsOnlyFlag to one and bufferSizeDB to '0'.

The following indicates recommended values for the SLConfigDescriptor of a Clock Reference Stream:

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 81

Table 14 — SLConfigDescriptor parameter values for a ClockReferenceStream
useAccessUnitStartFlag 0
useAccessUnitEndFlag 0
useRandomAccessPointFlag 0
usePaddingFlag 0
useTimeStampsFlag 0
useIdleFlag 0
durationFlag 0
timeStampResolution 0
timeStampLength 0
AU_length 0
degradationPriorityLength 0
AU_seqNumLength 0

7.3.2.6 Restrictions for elementary streams sharing the same object time base

While it is possible to share an object time base between multiple elementary streams through OCR_ES_ID, a number of
restrictions for the access to and processing of these elementary streams exist as follows:

1. When several elementary streams share a single object time base, the elementary streams without embedded object
clock reference information shall not be used by the player, even if accessible, until the elementary stream carrying the
object clock reference information becomes accessible (see 7.2.7.3 for the stream access procedure).

2. If an elementary stream without embedded object clock reference information is made available to the terminal at a
later point in time than the elementary stream carrying the object clock reference information, it shall be delivered in
synchronization with the other stream(s). Note that this implies that such a stream might not start playing from its
beginning, depending on the current value of the object time base.

3. When an elementary stream carrying object clock reference information becomes unavailable or is otherwise
manipulated in its delivery (e.g., paused), all other elementary streams which use the same object time base shall
follow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an elementary stream without embedded object clock reference information becomes unavailable this has no
influence on the other elementary streams that share the same object time base.

7.3.2.7 Usage of configuration options for object clock reference and time stamp values

7.3.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of objectClockReference values these time stamps may be ambiguous. The OTB time value
can be reconstructed each time an objectClockReference is transmitted in the headers of an SL packet according to
the following formula:

tOTB_reconstructed=(objectClockReference/SL.OCRResolution)+k*(2SL.OCRLength/SL.OCRResolution)

with k being an integer value denoting the number of wrap-arounds. The resulting time base tOTB_reconstructed is measured in
seconds.

When the first objectClockReference for an elementary stream is acquired, the value k shall be set to one. For each
subsequent occurence of objectClockReference the value k is estimated as follows:

The terminal shall implement a mechanism to estimate the value of the object time base for any time instant.

Each time an objectClockReference is received, the current estimated value of the OTB tOTB_estimated shall be
sampled. Then, tOTB_rec(k) is evaluated for different values of k. The value k that minimizes the term | tOTB_estimated -
tOTB_rec(k)| shall be assumed to yield the correct value of tOTB_reconstructed. This value may be used as new input to the object
time base estimation mechanism.

ISO/IEC 14496-1:2004(E)

82 © ISO/IEC 2004 — All rights reserved

The application shall ensure that this procedure yields an unambiguous value of k by selecting an appropriate length and
resolution of the objectClockReference element and a sufficiently high frequency of insertion of
objectClockReference values in the elementary stream. The choices for these values depend on the delivery jitter for
SL packets as well as the anticipated maximum drift between the clocks of the transmitting and receiving terminal.

7.3.2.7.2 Resolution of ambiguity in time stamp recovery

Due to the limited length of decodingTimeStamp and compositionTimeStamp values these time stamps may
become ambiguous according to the following formula:

tts(m)=(TimeStamp/SL.timeStampResolution)+m*(2SL.timeStampLength/SL.timeStampResolution)

with TimeStamp being either a decodingTimeStamp or a compositionTimeStamp and m being an integer value
denoting the number of wrap-arounds.

The correct value ttimestamp of the time stamp can be estimated as follows:

Each time a TimeStamp is received, the current estimated value of the OTB tOTB_estimated shall be sampled. tts(m) is
evaluated for different values of m. The value m that minimizes the term | tOTB_estimated – tts(m)| shall be assumed to yield
the correct value of ttimestamp.

The application may choose, separately for every individual elementary stream, the length and resolution of time stamps
so as to match its requirements on unambiguous positioning of time events. This choice depends on the maximum time
that an SL packet with a TimeStamp may be sent prior to the point in time indicated by the TimeStamp as well as the
required precision of temporal positioning.

7.3.2.7.3 Usage considerations for object clock references and time stamps

The time line of an object time base allows to discriminate two time instants separated by more than
1/SL.OCRResolution. OCRResolution should be chosen sufficiently high to match the accuracy needed by the
application to synchronize a set of elementary streams.

The decoding and composition time stamp allow to discriminate two time instants separated by more than
1/SL.timeStampResolution. timeStampResolution should be chosen sufficiently high to match the accuracy
needed by the application in terms of positioning of access units for a given elementary stream.

A TimeStampResolution higher than the OCRResolution will not achieve better discrimination between events. If
TimeStampResolution is lower than the OCRResolution, events for this specific stream cannot be positioned with
the maximum precision possible with this given OCRResolution.

The parameter OCRLength is signaled in the SL header configuration. 2SL.OCRLength/SL.OCRResolution is the time
interval covered by the objectClockReference counter before it wraps around. OCRLength should be chosen
sufficiently high to match the application needs for unambiguous positioning of time events from a set of elementary
streams.

When an application knows the value k defined in 7.3.2.7.1, the OTB time line is unambiguous for any time value. When
the application cannot reconstruct the k factor, as for example in any application that permits random access without
additional side information, the OTB time line is ambiguous modulo 2SL.OCRLength/SL.OCRResolution. Therefore, any
time stamp refering to this OTB is ambiguous. Therefore, any time stamp refering to this OTB is ambiguous. It may,
however, be considered unambiguous within an application environment through knowledge about the maximum expected
delivery jitter and constraints on the time by which an access unit can be sent prior to its decoding time.

Note that elementary streams that choose the time interval 2SL.timeStampLength/SL.timeStampResolution higher than
2SL.OCRLength/SL.OCRResolution can still only position time events unambiguously in the smaller of the two intervals.

In cases, where k and m can not be estimated correctly, the buffer model may be violated, resulting in unpredictable
performance of the decoder.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 83

EXAMPLE Let’s assume an application that wants to synchronize elementary streams with a precision of 1 ms.
OCRResolution should be chosen equal to or higher than 1000 (the time between two successive ticks of the OCR is
then equal to 1ms). Let’s assume OCRResolution=2000.

The application assumes a drift between the STB and the OTB of 0.1% (i.e. 1ms every second). The clocks need
therefore to be adjusted at least every second (i.e. in the worst case, the clocks will have drifted 1ms which is the precision
constraint). Let’s assume that objectClockReference are sent every 1s.

The application wants to have an unambiguous OTB time line of 24h without need to reconstruct the k factor. The
OCRLength is therefore chosen accordingly such that 2SL.OCRLength/SL.OCRResolution=24h.

Let’s assume now that the application wants to synchronize events within a single elementary stream with a precision of
10 ms. TimeStampResolution should be chosen equal to or higher than 100 (the time between two successive ticks of
the TimeStamp is then equal to 10ms). Let’s assume TimeStampResolution=200.

The application wants to be able to send access units at maximum 1 minute ahead of their decoding or composition time.
The timeStampLength is therefore chosen as

2SL.timeStampLength/SL.timeStampResolution = 2 minutes.

7.3.3 DMIF Application Interface

The DMIF Application Interface is a conceptual interface that specifies which data need to be exchanged between the
sync layer and the delivery mechanism. Communication between the sync layer and the delivery mechanism includes SL-
packetized data as well as additional information to convey the length of each SL packet.

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal compliant with
ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to receive the SL packets that
constitute an SL-packetized stream. Specifically, the delivery mechanism below the sync layer shall supply a method to
frame or otherwise encode the length of the SL packets transported through it.

The DMIF Application Interface specified in ISO/IEC 14496-6 embodies a superset of the required data delivery
functionality. The DAI has data primitives to receive and send data, which include indication of the data size. With this
interface, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL packet between the sync layer and
the delivery mechanism below.

7.4 Multiplexing of Elementary Streams

7.4.1 Introduction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF Application Interface,
as specified in clause 7.3. Multiplexing procedures and the architecture of the delivery protocol layers are outside the
scope of ISO/IEC 14496-1. However, care has been taken to define the sync layer syntax and semantics such that SL-
packetized streams can be easily embedded in various transport protocol stacks.

The analysis of existing transport protocol stacks has shown that, for stacks with fixed length packets (e.g., MPEG-2
Transport Stream) or with high multiplexing overhead (e.g., RTP/UDP/IP), it may be advantageous to have a generic, low
complexity multiplexing tool that allows interleaving of data with low overhead and low delay. This is particularly important
for low bit rate applications. Such a multiplex tool is specified in this subclause. Its use is optional.

7.4.2 M4Mux Tool

7.4.2.1 Overview

The M4Mux tool is a flexible multiplexer that accommodates interleaving of SL-packetized streams with varying
instantaneous bit rate. The basic data entity of the M4Mux is a M4Mux packet, which has a variable length. One or more
SL packets are embedded in a M4Mux packet as specified in detail in the remainder of this subclause. The M4Mux tool
provides identification of SL packets originating from different elementary streams by means of M4Mux Channel numbers.
Each SL-packetized stream is mapped into one M4Mux Channel. M4Mux packets with data from different SL-packetized

ISO/IEC 14496-1:2004(E)

84 © ISO/IEC 2004 — All rights reserved

streams can therefore be arbitrarily interleaved. The sequence of M4Mux packets that are interleaved into one stream are
called a M4Mux Stream.

A M4Mux Stream retrieved from storage or transmission may be parsed as a single data stream. However, framing of
M4Mux packets by the underlying layer is required for random access or error recovery. There is no requirement to frame
each individual M4Mux packet. The M4Mux also requires reliable error detection by the underlying layer. This design has
been chosen acknowledging the fact that framing and error detection mechanisms are in many cases provided by the
transport protocol stack below the M4Mux.

Two different modes of operation of the M4Mux providing different features and complexity are defined. They are called
Simple Mode and MuxCode Mode. A M4Mux Stream may contain an arbitrary mixture of M4Mux packets using either
Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified below.

The delivery timing of the M4Mux Stream can be conveyed by means of M4Mux clock reference time stamps. This
functionality may be used to establish a multiplex buffer model on the delivery layer. Both the time stamps and the
MuxCode Mode require out-of-band configuration prior to usage.

7.4.2.2 Simple Mode

In the simple mode one SL packet is encapsulated in one M4Mux packet and tagged by an index which is equal to the
M4Mux Channel number as indicated in Figure 11. This mode does not require any configuration or maintenance of state
by the receiving terminal.

 M4Mux-Packet

Payload Header

SL-Packet length index

Figure 11 — Structure of M4Mux packet in simple mode

7.4.2.3 MuxCode mode

In the MuxCode mode one or more SL packets are encapsulated in one M4Mux packet as indicated in Figure 12. This
mode requires configuration and maintenance of state by the receiving terminal. The configuration describes how M4Mux
packets are shared between multiple SL packets. In this mode the index value is used to dereference configuration
information that defines the allocation of the M4Mux packet payload to different M4Mux Channels.

....... SL-Packet SL-Packetversion SL-Packet length index

....... H PayloadH Payld H Payload

M4Mux-Packet

Figure 12 — Structure of M4Mux packet in MuxCode mode

7.4.2.4 M4Mux packet specification

7.4.2.4.1 Syntax

class M4MuxPacket (MuxCodeTableEntry mct[],
 M4MuxTimingDescriptor FM,
 M4MuxIDDescriptor mde) {
 unsigned int(8) index;
 if (mde == NULL | mde.Muxtype == 0) {
 bit(8) length;

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 85

 } else if (mde.Muxtype == 1) {
 length = 0;
 bit(1) nextByte;
 bit(7) length;
 while(nextByte) {
 bit(1) nextByte;
 bit(7) sizeByte;
 length = length<<7 | sizeByte;
 }
 }
 if (index<238) {
 if (length!=0) {
 SL_Packet sPayload;
 } else {
 bit(5) FMC_version_number;
 const bit(3) reserved=0b111;
 }
 } else if (index == 238) {
 bit(FM.FCR_Length) fmxClockReference;
 bit(FM.fmxRateLength) fmxRate;
 for (i=0; i<(length-FM.FCR_Length-FM.fmxRateLength); i++) {
 M4Mux_descriptor()
 }
 } else if (index == 239) {
 bit(8) stuffing[length];
 } else {
 bit(4) version;
 const bit(4) reserved=0b1111;
 multiple_SL_Packet mPayload(mct[index-240]);
 }
}

7.4.2.4.2 Semantics

length – the length of the M4Mux packet payload in bytes. This is equal to the length of the single encapsulated SL
packet in Simple Mode and to the total length of the multiple encapsulated SL packets in MuxCode Mode. If the
M4MuxIDDescriptor is not used, or if it is used and if the Muxtype is designing the first M4Mux tool, the length field is on
one byte. If the M4MuxIDDescriptor is used and if the Muxtype is designing the second M4Mux tool, the length calculation
relies on the combination of the nextByte and sizeByte fields that can be spread over several bytes. In Simple Mode,
when this length is equal to zero, the M4Mux packet carries one byte that contains the FMC_version_number field. In
Simple Mode, M4Mux packets with a length equal to zero (each carrying a FMC_version_number)can be duplicated.

FMC_version_number – This 5 bit field indicates the current version of the M4MuxChannelDescriptor that is applicable.
FMC_version_number is used for error resilience purposes. If this version number does not match the version of the
referenced M4MuxChannelDescriptor that has most recently been received, the following M4Mux packets belonging to the
same M4Mux Channel cannot be parsed. The implementation is free to either wait until the required version of
M4MuxChannelDescriptor becomes available or to discard the following M4Mux packets belonging to the same M4Mux
Channel. In Simple Mode, the value given to the FMC_version_number field is identical in subsequent duplicated
M4Mux packets with a length equal to zero.

7.4.2.5 Configuration and usage of MuxCode Mode

7.4.2.5.1 Syntax

aligned(8) class MuxCodeTableEntry {
 int i, k;
 bit(8) length;
 bit(4) MuxCode;
 bit(4) version;
 bit(8) substructureCount;
 for (i=0; i<substructureCount; i++) {
 bit(5) slotCount;
 bit(3) repetitionCount;
 for (k=0; k<slotCount; k++){

ISO/IEC 14496-1:2004(E)

86 © ISO/IEC 2004 — All rights reserved

 bit(8) m4MuxChannel[[i]][[k]];
 bit(8) numberOfBytes[[i]][[k]];
 }
 }
}

7.4.2.5.2 Semantics

The configuration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The transport of the
MuxCodeTableEntry shall be defined during the design of the transport protocol stack that makes use of the M4Mux
tool. Part 6 of this Final Committee Draft of International Standard defines a method to convey this information using the
DN_TransmuxConfig primitive.

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely manner.
However, no specific performance bounds are required for this control channel since version numbers allow to detect
M4Mux packets that cannot currently be decoded and, hence, trigger suitable action in the receiving terminal.

length – the length in bytes of the remainder of the MuxCodeTableEntry following the length element.

MuxCode – the number through which this MuxCode table entry is referenced.

version – indicates the version of the MuxCodeTableEntry. Only the latest received version of a
MuxCodeTableEntry is valid.

substructureCount – the number of substructures of this MuxCodeTableEntry.

slotCount – the number of slots with data from different M4Mux Channels that are described by this substructure.

repetitionCount – indicates how often this substructure is to be repeated. A repetitionCount zero indicates that
this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the last substructure of a
MuxCodeTableEntry.

M4MuxChannel[i][k] – the M4Mux Channel to which the data in this slot belongs.

numberOfBytes[i][k] – the number of data bytes in this slot associated to m4MuxChannel[i][k]. This number of
bytes corresponds to one SL packet.

7.4.2.5.3 Usage

The MuxCodeTableEntry describes how a M4Mux packet is partitioned into slots that carry data from different M4Mux
Channels. This is used as a template for parsing M4Mux packets. If a M4Mux packet is longer than the template, parsing
shall resume from the beginning of the template. If a M4Mux packet is shorter than the template, the remainder of the
template is ignored.

Note that the usage of MuxCode mode may not be efficient if SL packets for a given elementary stream do not have a
constant length. Given the overhead for an update of the associated MuxCodeTableEntry, usage of simple mode might be
more efficient.

Note further that data for a single M4Mux channel may be conveyed through an arbitrary sequence of M4Mux packets with
both simple mode and MuxCode mode.

EXAMPLE

In this example we assume the presence of three substructures. Each one has a different slot count as well as repetition
count. The exact parameters are as follows:

substructureCount = 3

slotCount[i] = 2, 3, 2 (for the corresponding substructure)

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 87

repetitionCount[i] = 3, 2, 1 (for the corresponding substructure)

We further assume that each slot configures channel number FMCn (m4MuxChannel) with a number of bytes Bytesn
(numberOfBytes). This configuration would result in a splitting of the M4Mux packet payload to:

FMC1 (Bytes1), FMC2 (Bytes2) repeated 3 times, then

FMC3 (Bytes3), FMC4 (Bytes4), FMC5 (Bytes5) repeated 2 times, then

FMC6 (Bytes6), FMC7 (Bytes7) repeated once

The layout of the corresponding M4Mux packet would be as shown in Figure 13.

M4Mux-Packet

F
M
C
1

v
e
r
s
i
o
n

l
e
n
g
t
h

I
n
d
e
x

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
6

F
M
C
7

Figure 13 — Example for a M4Mux packet in MuxCode mode

7.4.2.6 Configuration and usage of M4Mux clock references

7.4.2.6.1 Syntax

aligned(8) class M4MuxTimingDescriptor {
 bit(16) FCR_ES_ID;
 bit(32) FCRResolution;
 bit(8) FCRLength;
 bit(8) FmxRateLength;
}

7.4.2.6.2 Semantics

The sequence of fmxClockReference time stamps in a M4Mux stream constitutes a clock reference stream, albeit with
a different syntax as specified in subclause 7.3. Elementary streams shall be associated to the time base established by
this clock reference by referencing the FCR_ES_ID as their OCR_ES_ID in the SLConfigDescriptor. The transport of
the M4MuxTimingDescriptor shall be defined during the design of the transport protocol stack that makes use of the
M4Mux tool.

7.4.2.6.3 Usage

The M4Mux clock reference time stamps may be used to establish and verify a multiplex buffer model. The
fmxClockReference information determines the arrival time t(i) of individual bytes i of the M4Mux stream in the
following way:

)(
''

Re
)''()(

ifmxRate
ii

solutionFCR
iFCRit −

+=

where:

i is the index of any byte in the M4Mux stream for i'' < i < i'

ISO/IEC 14496-1:2004(E)

88 © ISO/IEC 2004 — All rights reserved

i'' is the index of the byte containing the last bit of the most recent fmxClockReference field in the
M4Mux stream

FCR(i'') is the time encoded in the fmxClockReference in units of FCRResolution

fmxRate(i) indicates the rate specified by the fmxRate field for byte i

7.4.2.7 M4Mux buffer descriptor

7.4.2.7.1 Syntax

aligned(8) class M4MuxBufferDescriptor {
 bit(8) m4MuxChannel;
 bit(24) FB_BufferSize;
}

7.4.2.7.2 Semantics

The size of multiplex buffers for each M4Mux channel is signaled by M4MuxBufferDescriptors. One descriptor per
M4Mux channel is required unless the DefaultM4MuxBufferDescriptor is used. The transport of the
M4MuxBufferDescriptors shall be defined during the design of the transport protocol stack that makes use of the
M4Mux tool.

m4MuxChannel - the number of a M4Mux channel

FB_BufferSize - the size of the M4Mux buffer for this M4Mux channel in bytes.

7.4.2.8 Default M4Mux buffer descriptor

7.4.2.8.1 Syntax

aligned(8) class DefaultM4MuxBufferDescriptor {
 bit(24) FB_DefaultBufferSize;
}

7.4.2.8.2 Semantics

The default size of multiplex buffers for each individual channel in a M4Mux stream is signaled by the
DefaultM4MuxBufferDescriptor. M4Mux channels that use a different buffer size may signal this using the
M4MuxBufferDescriptor. The transport of the DefaultM4MuxBufferDescriptor shall be defined during the
design of the transport protocol stack that makes use of the M4Mux tool.

FB_DefaultBufferSize - the default size of M4Mux buffers for this M4Mux stream in bytes.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 89

7.4.2.9 M4Mux buffer model

Rbx

FB 1

FB 2

FB m

FBn is the M4Mux buffer for the elementary stream in M4Mux channel n

Rbx is the rate at which data enters the M4Mux buffers.

The M4Mux buffer model applies to M4Mux streams that utilize M4Mux Clock reference channel packets to define the
delivery timing of the M4Mux stream. The M4Mux stream enters the M4Mux buffer model at the rate and timing as defined
by the fmxClockReference and fmxRate fields. There may be some periods of time during which there are no bytes at the
input of the M4Mux buffer model, but the bytes of all M4Mux packets that preceed the next M4Mux Clock reference
channel packet shall be delivered to the M4Mux buffer model prior to the delivery of any byte of the next M4Mux Clock
reference channel packet.

For each M4Mux channel i the M4Mux packet is stored in M4Mux Buffer FBi. The bytes in buffer FBi are removed at a rate
specified by the InstantRate field in the SL header of the contained SL-packetized stream. Upon removal each byte enters
the elementary stream buffer DBi. The M4Mux stream shall be constructed so that the following condition is met :

• Buffer FBi shall not overflow.

7.4.2.10 M4MuxID Descriptor

7.4.2.10.1 Syntax

aligned(8) class M4MuxIDDescriptor {
 bit(8) MuxID;
 bit(4) Muxtype;
 bit(4) Muxmanagement;
}
7.4.2.10.2 Semantics

MuxID – the ID of the M4Mux stream.

Muxtype – the type of the Multiplexing tool used to generate the M4Mux stream. Indicated type value shall comply with
the following Table 15 — Multiplexing type table.

Muxmanagement – the mode of management used by the Multiplexing tool, to generate the M4Mux stream. Indicated
mode value shall comply with Table 15 — Multiplexing management mode table.

ISO/IEC 14496-1:2004(E)

90 © ISO/IEC 2004 — All rights reserved

Table 15 — Multiplexing type table

Type Multiplexing tool
0 M4Mux tool
1 M4Mux_2 tool
2-7 ISO/IEC 14496-1 Reserved
8-15 User Private

Table 16 — Multiplexing management mode table

Type management mode
0 Static
1 Dynamic
2-7 ISO/IEC 14496-1 Reserved
8-15 User Private

7.4.3 M4Mux Descriptors

Directly derived from the M4Mux descriptor classes, hereafter are defined the M4Mux descriptors pointed to by the “List of
Class Tags for Descriptors” table.

7.4.3.1 M4MuxChannelDescriptor

7.4.3.1.1 Syntax

class M4MuxChannelDescriptor extends BaseDescriptor
: bit(8) tag= M4MuxChannelDescrTag {

 bit(5) version_number;
 bit(1) current_next_indicator;
 const bit(2) reserved=0b11;
 for (i=0; i<(sizeOfInstance-2); i += 3) {
 bit(16) ES_ID;
 bit(8) M4MuxChannel;
 }
}

7.4.3.1.2 Semantics

version_number -- This 5 bit field is the version number of the complete M4MuxChannelDescriptor. The version
number shall be incremented by 1 whenever the definition of the M4MuxChannelDescriptor changes. Upon reaching
the value 31, it wraps around to 0. When the current_next_indicator is set to '1', then the version_number shall
be that of the currently applicable M4MuxChannelDescriptor. When the current_next_indicator is set to '0', then
the version_number shall be that of the next applicable M4MuxChannelDescriptor.

current_next_indicator -- A 1 bit indicator, which when set to '1' indicates that the received
M4MuxChannelDescriptor is currently applicable. When the bit is set to '0', it indicates that the received
M4MuxChannelDescriptor is not yet applicable and shall be the next M4MuxChannelDescriptor to become valid.

A validity period of time is associated with each version_number of a M4MuxChannelDescriptor. It is only within
that validity period of time, that M4Mux packets refer to the version identified by that version_number. The validity period
of time of one version starts as soon as the first M4MuxChannelDescriptor is sent with the
current_next_indicator == 1.

The validity period of time of one version ends as soon as an empty M4MuxChannelDescriptor is sent with the
current_next_indicator == 1, meaning that the assignements of that version of the M4MuxChannelDescriptor
are not any more relevant.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 91

An empty M4MuxChannelDescriptor is a M4MuxChannelDescriptor shall be sent with sizeOfInstance == 1,
such that there are no elementary streams described.

ES_ID – this 16-bit field specifies the identifier of an ISO/IEC 14496-1 SL-packetized stream.

M4MuxChannel - This 8-bit field specifies the number of the M4Mux channel used for this SL-packetized stream.

7.4.3.2 M4MuxBufferSize Descriptor

7.4.3.2.1 Syntax

class M4MuxBufferSizeDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxBufferSizeDescrTag {
 DefaultM4MuxBufferDescriptor()
 for (i=0; i<(sizeOfInstance-3); i += 4) {
 M4MuxBufferDescriptor()
 }
}

7.4.3.2.2 Semantics

DefaultM4MuxBufferDescriptor - the default size of multiplex buffers for each individual channel in a M4Mux
stream is signalled by the DefaultM4MuxBufferDescriptor class.

M4MuxBufferDescriptor - the exact size of multiplex buffers for each channel in a M4Mux stream can be signalled by
the M4MuxBufferDescriptor class.

7.4.3.3 M4MuxTiming Descriptor

7.4.3.3.1 Syntax

class M4MuxTimingDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxTimingDescrTag {
 M4MuxTimingDescriptor()
}

7.4.3.3.2 Semantics

M4MuxTimingDescriptor – This descriptor class defines FCR_ES_ID, FCRResolution, FCRLength,
FmxRateLength.

7.4.3.4 M4MuxCodeTable Descriptor

7.4.3.4.1 Syntax

class M4MuxCodeTableDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxCodeTableDescrTag {

for(i =0; i < sizeOfInstance; i += sizeof (MuxCodeTableEntry ()))
{

 MuxCodeTableEntry ()
 }
}

7.4.3.4.2 Semantics

MuxCodeTableEntry () – This class defines the M4Mux configuration of one M4Mux channel.
Several M4MuxCodeTableDescriptor may be used with different instances of the MuxCodeTableEntry class.

ISO/IEC 14496-1:2004(E)

92 © ISO/IEC 2004 — All rights reserved

7.4.3.5 M4MuxIdent Descriptor

7.4.3.5.1 Syntax

class M4MuxIdentDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxIdentDescrTag {
 M4MuxIDDescriptor ()
}

7.4.3.5.2 Semantics

M4MuxIDDescriptor – This class defines MuxID, Muxtype, Muxmanagement.

8 Syntactic Description Language

8.1 Introduction

This subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This mechanism
is based on a Syntactic Description Language (SDL), documented here in the form of syntactic description rules. It directly
extends the C-like syntax used in ISO/IEC 11172-1:1993 and ISO/IEC 13818-1:2000 into a well-defined framework that
lends itself to object-oriented data representations. In particular, SDL assumes an object-oriented underlying framework in
which bitstream units consist of “classes.” This framework is based on the typing system of the C++ and Java
programming languages. SDL extends the typing system by providing facilities for defining bitstream-level quantities, and
how they should be parsed.

The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic and logical
expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow control is needed to take
into account context-sensitive data. Several examples are used to clarify the structure.

8.2 Elementary Data Types

8.2.1 Introduction

The SDL uses the following elementary data types:

1. Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These describe the encoded value
exactly as it is to be used by the appropriate decoding process.

2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual length is
determined by the context of the bitstream (e.g., the value of another parameter).

3. Constant-length indirect representation bit fields. These require an extra lookup into an appropriate table or variable to
obtain the desired value or set of values.

4. Variable-length indirect representation bit fields (e.g., Huffman codes).

These elementary data types are described in more detail in the clauses to follow immediately.

All quantities shall be represented in the bitstream with the most significant byte first, and also with the most significant bit
first.

8.2.2 Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields shall be represented as:

Rule E.1: Elementary Data Types

[aligned] type[(length)] element_name [= value]; // C++-style comments allowed

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 93

The type may be any of the following: int for signed integer, unsigned int for unsigned integer, double for floating
point, and bit for raw binary data. The length attribute indicates the length of the element in bits, as it is actually stored in
the bitstream. Note that a data type equal to double shall only use 32 or 64 bit lengths. The value attribute shall be
present only when the value is fixed (e.g., start codes or object IDs), and it may also indicate a range of values (i.e.,
‘0x01..0xAF’). The type and the optional length attributes are always present, except if the data is non-parsable, i.e., it is
not included in the bitstream. The keyword aligned indicates that the data is aligned on a byte boundary. As an example,
a start code would be represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), may be used to signify alignment on other than byte boundary.
Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value ‘0’. An entity such as
temporal reference would be represented as:

unsigned int(5) temporal_reference;

where unsigned int(5) indicates that the element shall be interpreted as a 5-bit unsigned integer. By default, data
shall be represented with the most significant bit first, and the most significant byte first.

The value of parsable variables with declarations that fall outside the flow of declarations shall be set to 0.

Constants shall be defined using the keyword const.

EXAMPLE

const int SOME_VALUE=255; // non-parsable constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To designate binary values, the 0b prefix shall be used, similar to the 0x prefix for hexadecimal numbers. A period (‘.’)
may be optionally placed after every four digits for readability. Hence 0x0F is equivalent to 0b0000.1111.

In several instances, it may be desirable to examine the immediately following bits in the bitstream, without actually
consuming these bits. To support this behavior, a ‘*’ character shall be placed after the parse size parentheses to modify
the parse size semantics.

Rule E.2: Look-ahead parsing

[aligned] type (length)* element_name;

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without advancing the
current position in the bitstream using the following representation:

aligned unsigned int (32)* next_code;
8.2.3 Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the length attribute to be a variable included in the bitstream, a non-parsable
variable, or an expression involving such variables.

EXAMPLE

unsigned int(3) precision;
int(precision) DC;

8.2.4 Constant-Length Indirect Representation Bit Fields

Indirect representation indicates that the actual value of the element at hand is indirectly specified by the bitstream through
the use of a table or map. In other words, the value extracted from the bitstream is an index to a table from which the final
desired value is extracted. This indirection may be expressed by defining the map itself:

ISO/IEC 14496-1:2004(E)

94 © ISO/IEC 2004 — All rights reserved

Rule E.3: Maps

map MapName (output_type) {
index, {value_1, … value_M},
 …

}

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input type of a map
(the index specified in the first column) shall always be bit. The output_type entry shall be either a predefined type or a
defined class (classes are defined in 8.3.1). The map is defined as a set of pairs of such indices and values. Keys are
binary string constants while values are output_type constants. Values shall be specified as aggregates surrounded by
curly braces, similar to C or C++ structures.

EXAMPLE

class YUVblocks {// classes are fully defined later on
 int Yblocks;
 int Ublocks;
 int Vblocks;
}

// a table that relates the chroma format with the number of blocks
// per signal component
map blocks_per_component (YUVblocks) {
 0b00, {4, 1, 1}, // 4:2:0
 0b01, {4, 2, 2}, // 4:2:2
 0b10, {4, 4, 4} // 4:4:4
}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types

type (MapName) name;

The type of the variable shall be identical to the type returned from the map.

EXAMPLE

YUVblocks(blocks_per_component) chroma_format;

Using the above declaration, a particular value of the map may be accessed using the construct:
chroma_format.Ublocks.

8.2.5 Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical specification to the fixed length
case shall be used:

class val {
 unsigned int foo;
 int bar;
}

map sample_vlc_map (val) {
 0b0000.001, {0, 5},
 0b0000.0001, {1, -14}
}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 95

The only difference is that the indices of the map are now of variable length. The variable-length codewords are (as before)
binary strings, expressed by default in ‘0b’ or ‘0x’ format, optionally using the period (‘.’) every four digits for readability.

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it may be
inefficient to keep using variable length codewords for all possible values. This necessitates the use of escape codes, that
signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such exceptions,
parsable type declarations are allowed for map values.

EXAMPLE This example uses the class type ‘val’ as defined above.

map sample_map_with_esc (val) {
 0b0000.001, {0, 5},
 0b0000.0001, {1, -14},
 0b0000.0000.1, {5, int(32)},
 0b0000.0000.0, {0, -20}
}

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first element
(val.foo). The following 32 bits are parsed and assigned as the value of the second element (val.bar). Note that, in
case more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements
are parsed. In addition, the type within the map declaration shall match the type used in the class declaration associated
with the map’s return type.

8.3 Composite Data Types

8.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed. Their definition is as follows.

Rule C.1: Classes

[aligned] [abstract] [expandable[(maxClassSize)]] class object_name [extends parent_class]
[: bit(length) [id_name=] object_id | id_range] {
[element; …] // zero or more elements

}

The different elements within the curly braces are the definitions of the elementary bitstream components discussed in
12.2 or control flow elements that will be discussed in a subsequent subclause.

The optional keyword extends specifies that the class is “derived” from another class. Derivation implies that all
information present in the base class is also present in the derived class, and that, in the bitstream, all such information
precedes any additional bitstream syntax declarations specified in the new class.

The optional attribute id_name allows to assign an object_id, and, if present, is the key demultiplexing entity which allows
differentiation between base and derived objects. It is also possible to have a range of possible values: the id_range is
specified as start_id .. end_id, inclusive of both bounds.

If the attribute id_name is used, a derived class may appear at any point in the bitstream where its base class is
specified in the syntax. This allows to express polymorphism in the SDL syntax description. The actual class to be
parsed is determined as follows:

• The base class declaration shall assign a constant value or range of values to object_id.

• Each derived class declaration shall assign a constant value or ranges of values to object_id. This value or set of
values shall correspond to legal object_id value(s) for the base class.

NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes
may not replace their base class in the bitstream.

ISO/IEC 14496-1:2004(E)

96 © ISO/IEC 2004 — All rights reserved

NOTE 2 — Derived classes may use the same object_id value as the base class. In that case classes can only be
discriminated through context information.

EXAMPLE

class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {
 // here we get vertical_size_extension, if present
 if (scalable_mode==DATA_PARTITIONING) {
 unsigned int(7) priority_breakpoint;
 }
 …
}

class foo {
 int(3) a;
 ...
}

class bar extends foo {
 int(5) b; // this b is preceded by the 3 bits of a
 int(10) c;
 ...
}

The order of declaration of the bitstream components is important: it is the same order in which the elements appear in the
bitstream. In the above examples, bar.b immediately precedes bar.c in the bitstream.

Objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is an object itself.

8.3.2 Abstract Classes

When the abstract keyword is used in the class declaration, it indicates that only derived classes of this class shall
be present in the bitstream. This implies that the derived classes may use the entire range of IDs available. The
declaration of the abstract class requires a declaration of an ID, with the value 0.

EXAMPLE

abstract class Foo : bit(1) id=0 { // the value 0 is not really used
 ...
}

// derived classes are free to use the entire range of IDs
class Foo0 extends Foo : bit(1) id=0 {
 ...
}

class Foo1 extends Foo : bit(1) id=1 {
 ...
}

class Example {
 Foo f; // can only be Foo0 or Foo1, not Foo
}

8.3.3 Expandable classes

When the expandable keyword is used in the class declaration, it indicates that the class may contain implicit arrays
or undefined trailing data, called the "expansion". In this case the class encodes its own size in bytes explicitly. This may
be used for classes that require future compatible extension or that may include private data. A legacy device is able to
decode an expandable class up to the last parsable variable that has been defined for a given revision of this class.
Using the size information, the parser shall skip the class data following the last known syntax element. Anywhere in the
syntax where a set of expandable classes with object_id is expected it is permissible to intersperse expandable classes
with unknown object_id values. These classes shall be skipped, using the size information.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 97

The size encoding precedes any parsable variables of the class. If the class has an object_id, the encoding of the
object_id precedes the size encoding. The size information shall not include the number of bytes needed for the size and
the object_id encoding. Instances of expandable classes shall always have a size corresponding to an integer number of
bytes. The size information is accessible within the class as class instance variable sizeOfInstance.

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size of this
class in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:

int sizeOfInstance = 0;
bit(1) nextByte;
bit(7) sizeOfInstance;
while(nextByte) {
 bit(1) nextByte;
 bit(7) sizeByte;
 sizeOfInstance = sizeOfInstance<<7 | sizeByte;
}

8.3.4 Parameter types

A parameter type defines a class with parameters. This is to address cases where the data structure of the class
depends on variables of one or more other objects. Since SDL follows a declarative approach, references to other objects,
in such cases, cannot be performed directly (none is instantiated). Parameter types provide placeholders for such
references, in the same way as the arguments in a C function declaration. The syntax of a class definition with
parameters is as follows.

Rule C.2: Class Parameter Types

[aligned] [abstract] class object_name [(parameter list)] [extends parent_class]
[: bit(length) [id_name=] object_id | id_range] {

[element; …] // zero or more elements
}

The parameter list is a list of type names and variable name pairs separated by commas. Any element of the bitstream,
or value derived from the bitstream with a variable-length codeword, or a constant, can be passed as a parameter.

A class that uses parameter types is dependent on the objects in its parameter list, whether class objects or simple
variables. When instantiating such a class into an object, the parameters have to be instantiated objects of their
corresponding classes or types.

EXAMPLE

class A {
 // class body
 ...
 unsigned int(4) format;
}

class B (A a, int i) { // B uses parameter types
 unsigned int(i) bar;
 ...
 if(a.format == SOME_FORMAT) {
 ...
 }
 ...
}

ISO/IEC 14496-1:2004(E)

98 © ISO/IEC 2004 — All rights reserved

class C {
 int(2) i;
 A a;
 B foo(a, I); // instantiated parameters are required
}

8.3.5 Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can depend on run-
time parameters such as other bitstream values or expressions that involve such values. The array declaration is
applicable to both elementary as well as composite objects.

Rule A.1: Arrays

typespec name [length];

typespec is a type specification (including bitstream representation information, e.g. ‘int(2)’). The attribute name is
the name of the array, and length is its length.

EXAMPLE

unsigned int(4) a[5];
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an
unsigned integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as
well. The parsing order from the bitstream corresponds to scanning the array by incrementing first the right-most index of
the array, then the second, and so on .

8.3.6 Partial Arrays

In several situations, it is desirable to load the values of an array one by one, in order to check, for example, a terminating
or other condition. For this purpose, an extended array declaration is allowed in which individual elements of the array may
be accessed.

Rule A.2: Partial Arrays

typespec name[[index]];

Here index is the element of the array that is defined. Several such partial definitions may be given, but they shall all agree
on the type specification. This notation is also valid for multidimensional arrays.

EXAMPLE

int(4) a[[3]][[5]];

indicates the element a(5, 3) of the array (the element in the 6th row and the 4th column), while

int(4) a[3][[5]];

indicates the entire sixth column of the array, and

int(4) a[[3]][5];

indicates the entire fourth row of the array, with a length of 5 elements.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 99

NOTE a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.

8.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the same type as
that of the base class. Let us assume that a set of polymorphic classes is defined, derived from the base class Foo
(may or may not be abstract):

class Foo : int(16) id = 0 {
 ...
}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the class ID.
Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs defined in the base (if not
abstract) or its derived classes. This behavior is indicated by an array declaration without a length specification.

EXAMPLE 1

class Example {
 Foo f[]; // length implicitly obtained via ID resolution
}

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the
length.

EXAMPLE 2

class Example {
 Foo f[1 .. 255]; // at least 1, at most 255 elements
}

In this example, ‘f’ may have at least 1 and at most 255 elements.

8.4 Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.

8.5 Non-Parsable Variables

In order to accommodate complex syntactic constructs, in which context information cannot be directly obtained from the
bitstream but only as a result of a non-trivial computation, non-parsable variables are allowed. These are strictly of local
scope to the class they are defined in. They may be used in expressions and conditions in the same way as bitstream-
level variables. In the following example, the number of non-zero elements of an array is computed.

unsigned int(6) size;
int(4) array[size];
…
int i; // this is a temporary, non-parsable variable
for (i=0, n=0; i<size; i++) {
 if (array[[i]]!=0)
 n++;
}

int(3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

8.6 Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as repetitive
parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++, zero corresponds to
false, and non-zero corresponds to true.

ISO/IEC 14496-1:2004(E)

100 © ISO/IEC 2004 — All rights reserved

Rule FC.1: Flow Control Using If-Then-Else

if (condition) {
…

} [else if (condition) {
…

}] [else {
…

}]

EXAMPLE 1

class conditional_object {
 unsigned int(3) foo;
 bit(1) bar_flag;
 if (bar_flag) {
 unsigned int(8) bar;
 }
 unsigned int(32) more_foo;
}

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag’.

EXAMPLE 2

class conditional_object {
 unsigned int(3) foo;
 bit(1) bar_flag;
 if (bar_flag) {
 unsigned int(8) bar;
 } else {
 unsigned int(some_vlc_table) bar;
 }
 unsigned int(32) more_foo;
}

Here we allow two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally well have
another entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note
that the use of a flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice
(as in the example above), the types shall be identical.

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

Rule FC.2: Flow Control Using Switch

switch (condition) {
 [case label1: …]
 [default:]

}

The same category of context-sensitive objects also includes iterative definitions of objects. These simply imply the
repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the conditional repetition that
implies context, but fixed repetitions are obviously treated the same way). The familiar structures of ‘for’, ‘while’, and ‘do’
loops can be used for this purpose.

Rule FC.3: Flow Control Using For

for (expression1; expression2; expression3) {
 …

}

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 101

expression1 is executed prior to starting the repetitions. Then expression2 is evaluated, and if it is non-zero (true) the
declarations within the braces are executed, followed by the execution of expression3. The process repeats until
expression2 evaluates to zero (false).

Note that it is not allowed to include a variable declaration in expression1 (in contrast to C++).

Rule FC.4: Flow Control Using Do

do {
 …

} while (condition);

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at least
once.

Rule FC.5: Flow Control Using While

while (condition) {
 …

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

8.7 Built-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator

lengthof(variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of bits that was
most recently used to parse the quantity at hand. A return value of 0 means that no bits were parsed for this variable.

8.8 Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables.

For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by curly braces:
‘{‘ and ‘}’). In particular, only variables declared in class scope are considered class member variables, and are thus
available in objects of that particular type.

9 Profiles

9.1.1 Introduction

This subclause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496. Each profile at a
given level constitutes a subset of this part of ISO/IEC 14496 to which system manufacturers and content creators can
claim conformance in order to ensure interoperability.

ISO/IEC 14496-1:2004(E)

102 © ISO/IEC 2004 — All rights reserved

The object descriptor profiles (OD profiles) specify the allowed configurations of the object descriptor tool and the sync
layer tool.

Profile definitions, by themselves, are not sufficient to provide a full characterization of a receiving terminal’s capabilities
and the resources needed for a presentation. For this reason, levels are defined within each profile. Levels constrain the
values of parameters in a given profile in order to specify an upper complexity bound.

9.1.2 OD Profile Definitions

9.1.2.1 Overview

The object descriptor profiles (OD profiles) specify the configurations of the object descriptor tool and the sync layer tool
that are allowed. The object descriptor tool provides a structure for all descriptive information. The sync layer tool provides
the syntax to convey, among others, timing information for elementary streams. object descriptor profiles are used, in
particular, to reduce the amount of asynchronous operations as well as the amount of permanent storage.

9.1.2.2 OD Profiles Tools

The following tools are available to construct OD profiles:

• Object descriptor (OD) tool as defined in 7.2.5.

• Sync layer (SL) tool as defined in 7.3.2

• Object content information (OCI) tool as defined in 7.2.4.

• Intellectual property management and protection (IPMP) tool as defined in 7.2.3.

9.1.2.3 OD Profiles

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the tools. No
additional profiles are foreseen at the moment, but the possibility of adding Profiles through amendments is left open.

Table 17 — OD Profiles

 OD Profiles

OD Tools Core
SL X
OD X
OCI X
IPMP X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

9.1.2.4 OD Profiles@Levels

9.1.2.4.1 Levels for the Core Profile

No levels are defined yet for the OD Core profile. Future definition of Levels is anticipated; this will happen by means of an
amendment to this part of the standard.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 103

Annex A
(informative)

Time Base Reconstruction

A.1 Time Base Reconstruction

The time stamps present in the sync layer are the means to synchronize events related to decoding, composition and
overall buffer management. In particular, the clock references are the sole means of reconstructing the sending terminal’s
clock at the receiving terminal, when required (e.g., for broadcast applications). A normative method for this reconstruction
is not specified. The following describes the process at a conceptual level.

A.1.1 Adjusting the Receiving Terminal’s OTB

Each elementary stream may be generated by an encoder at the sending terminal with a different object time base (OTB).
For each stream that conveys OCR information, it is possible for the receiving terminal to adjust a local OTB to the
sending terminals’ OTB. This is done by using well-known PLL techniques. The notion of time for each data stream can
therefore be recovered at the receiving end.

A.1.2 Mapping Time Stamps to the STB

The OTBs of all data streams may run at a different speed than the STB of the receiving terminal. Therefore, a method is
needed to map the value of time stamps expressed in any OTB to the STB of the receiving terminal. This step may be
done jointly with the recovery of individual OTB’s as described in the previous subclause.

Note that the receiving terminals’ system time base need not be locked to any of the available object time bases.

The composition time tSCT of a composition unit, expressed in terms of STB of the receiving terminal, can be calculated
from the composition time stamp value tOCT, expressed in terms of the OTB of the relevant sending terminal, by a linear
transformation:

STARTSTBSTARTOTB
OTB

STB
OCT

OTB

STB
SCT tt

t
tt

t
tt −− +⋅

∆
∆

−⋅
∆
∆

=

with:

SCTt composition time of a composition unit measured in units of STBt

STBt current time in the receiving terminal’s STB

OCTt composition time of a composition unit measured in units of OTBt

OTBt current time in the data stream’s OTB, conveyed by an OCR

STARTSTBt − value of receiving terminal’s STB when the first byte of the OCR time stamp of the data stream is

 encountered

STARTOTBt − value of the first OCR time stamp of the data stream

ISO/IEC 14496-1:2004(E)

104 © ISO/IEC 2004 — All rights reserved

STARTOTBOTBOTB ttt −−=∆

STARTSTBSTBSTB ttt −−=∆

The quotient OTBSTB tt ∆∆ is the instantaneous scaling factor between the two time bases. In cases where the clock
speed and resolution of the sending terminal and of the receiving terminal are nominally identical, this quotient is very
near 1. To avoid long term rounding errors, the quotient OTBSTB tt ∆∆ should always be recalculated whenever the
formula is applied to a newly received composition time stamp. The quotient can be updated each time an OCR time
stamp is encountered.

A similar formula can be derived for decoding times by replacing composition time stamps with decoding time stamps. If
time stamps for some access units or composition units are only known implicitly, e.g., given by known update rates, these
have to be mapped with the same mechanism.

With this procedure it is possible to synchronize the STB at a receiving terminal to several OTBs so that correct decoding
and composition from several data streams is possible.

A.1.3 Adjusting the STB to an OTB

When all data streams in a presentation use the same OTB, it is possible to lock the STB at the receiving terminal to this
OTB using well-known PLL techniques. In this case the mapping described in the previous subclause is not necessary and
the following mapping may be used.

OCTSCT

OTBSTB

STARTOTBSTARTSTB

tt
tt

tt

=
∆=∆

= −−

A.1.4 System Operation without Object Time Base

If a time base for an elementary stream is neither conveyed by OCR information nor derived from another elementary
stream, time stamps can still be used by a receiving terminal but not in applications that require flow-control. For example,
file-based playback may not require time base reconstruction: time stamps alone are sufficient for synchronization if a
single time base is assumed for all the data streams.

In the absence of time stamps, the receiving terminal may only operate under the assumption that each access unit is to
be decoded and presented as soon as it is received. In this case the systems decoder model does not apply and cannot
be used as a model for the terminal’s behavior.

In the case that a universal clock is available which can be shared between peer terminals, it may be used as a common
time base. It is then possible to use the systems decoder model without explicit OCR transmission. The procedures for
doing so are application-dependent and are not defined in ISO/IEC 14496-1.

A.2 Temporal aliasing and audio resampling

A receiving terminal compliant with ISO/IEC 14496 is not required to synchronize decoding of AUs and composition of
CUs. In other words, its STB does not have to be identical to any of the OTBs of received data streams. The number of
decoded and actually presented (displayed/played back) units per second may therefore differ. Temporal aliasing may
then manifest itself as composition units being either presented multiple times or skipped.

If audio signals are encoded on a system with an OTB different from the STB of the receiving terminal, even nominally
identical sampling rates of the audio samples may not match exactly, so that audio samples may be dropped or repeated.

Proper re-sampling techniques may of course in both cases be applied at the receiving terminal.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 105

A.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough

The different steps to reconstruct a synchronized scene are as follows:

1. The time base for each data stream is recovered either from the OCR conveyed with the SL-packetized elementary
stream of this data stream or from another data stream present in the presentation.

2. Object time stamps are mapped to the STB of the receiving terminal according to a suitable algorithm (e.g., the one
detailed above).

3. Received access units are placed in the decoding buffer.

4. Each access unit is instantaneously decoded by the decoder at instants of time (in terms of the receiver terminal’s
STB) corresponding to its implicit or explicit DTS and the resulting one or more composition units are placed in the
composition memory.

The compositor may access each CU at time instants between the one corresponding its CTS and the one corresponding
to the CTS of the subsequent CU.

ISO/IEC 14496-1:2004(E)

106 © ISO/IEC 2004 — All rights reserved

Annex B
(informative)

Registration procedure

B.1 Procedure for the request of a Registration ID (RID)

Requesters of a RID shall apply to the Registration Authority. Registration forms shall be available from the Registration
Authority. The requester shall provide the information specified in B.3. Companies and organizations are eligible to apply.

B.2 Responsibilities of the Registration Authority

The primary responsibilities of the Registration Authority administrating the registration of either the private data format
identifiers or the IPMP system type values are outlined in this annex; certain other responsibilities may be found in the
JTC 1 Directives. The Registration Authority shall:

a) implement a registration procedure for application for a unique RID in accordance with the JTC 1 Directives;

b) receive and process the applications for allocation of an identifier from application providers;

c) ascertain which applications received are in accordance with this registration procedure, and to inform the
requester within 30 days of receipt of the application of their assigned RID;

d) inform application providers whose request is denied in writing with 30 days of receipt of the application, and to
consider resubmissions of the application in a timely manner;

e) maintain an accurate register of the allocated identifiers. Revisions to format specifications shall be accepted and
maintained by the Registration Authority;

f) make the contents of this register available upon request to National Bodies of JTC 1 that are members of ISO or
IEC, to liaison organizations of ISO or IEC and to any interested party;

g) maintain a data base of RID request forms, granted and denied. Parties seeking technical information on the
format of private data which has a RID shall have access to such information which is part of the data base
maintained by the Registration Authority;

h) report its activities annually to JTC 1, the ITTF, and the SC 29 Secretariat, or their respective designees; and

i) accommodate the use of existing RIDs whenever possible.

B.3 Contact information for the Registration Authority

CISAC

20-26 boulevard du Parc

92200 Neuilly sur Seine

FRANCE

Tel: +33 1 55 62 08 50

Fax: +33 1 55 62 08 60

E-mail: info@ipmp-ra.org

Web: http://www.ipmp-ra.org/ipmp/ipmpweb.nsf/home1

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 107

B.4 Responsibilities of Parties Requesting a RID

The party requesting a format identifier or an IPMP system type identifier shall:

a) apply using the Form and procedures supplied by the Registration Authority;

b) include a description of the purpose of the registered bitstream, and the required technical details as specified in
the application form;

c) provide contact information describing how a complete description can be obtained on a non-discriminatory
basis;

d) agree to institute the intended use of the granted RID within a reasonable time frame; and

e) to maintain a permanent record of the application form and the notification received from the Registration
Authority of a granted RID.

B.5 Appeal Procedure for Denied Applications

The Registration Management Group is formed to have jurisdiction over appeals to denied request for a RID. The RMG
shall have a membership who is nominated by P- and L-members of the ISO technical committee responsible for
ISO/IEC 14496. It shall have a convenor and secretariat nominated from its members. The Registration Authority is
entitled to nominate one non-voting observing member.

The responsibilities of the RMG shall be:

a) to review and act on all appeals within a reasonable time frame;

b) to inform, in writing, organizations which make an appeal for reconsideration of its petition of the RMGs
disposition of the matter;

c) to review the annual report of the Registration Authorities summary of activities; and

d) to supply Member Bodies of ISO and National Committees of IEC with information concerning the scope of
operation of the Registration Authority.

B.6 Registration Application Form

B.6.1 Contact Information of organization requesting a RID

Organization Name:

Address:

Telephone:

Fax:

E-mail:

Telex:

ISO/IEC 14496-1:2004(E)

108 © ISO/IEC 2004 — All rights reserved

B.6.2 Request for a specific RID

NOTE — If the system has already been implemented and is in use, fill in this item and item B.6.3 and skip to B.6.5,
otherwise leave this space blank and skip to B.6.3)

B.6.3 Short description of RID that is in use and date system was implemented

B.6.4 Statement of an intention to apply the assigned RID

B.6.5 Date of intended implementation of the RID

B.6.6 Authorized representative

Name:

Title:

Address:

Email:

Signature __________________________________

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 109

B.6.7 For official use of the Registration Authority

 Registration Rejected _____

 Reason for rejection of the application:

 Registration Granted ______ Registration Value ____________________

Attachment 1 Attachment of technical details of the registered data format.

Attachment 2 Attachment of notification of appeal procedure for rejected applications.

ISO/IEC 14496-1:2004(E)

110 © ISO/IEC 2004 — All rights reserved

Annex C
(informative)

The QoS Management Model for ISO/IEC 14496 Content

The Quality of Service (QoS) aspects deserve particular attention in ISO/IEC 14496: the ability of the standard to adapt to
different service scenarios is affected by its ability to consistently manage QoS requirements. Current techniques on error
resilience are already effective, but are not and will not be able to satisfy every possible requirement.

In general terms, the end-user acceptance of a particular service varies depending on the kind of service. As an example,
person to person communication is severely affected by the audio quality, while it can tolerate variations in the video
quality. However, a television broadcast with higher video and lower audio quality may be acceptable depending on the
program being transmitted. The acceptability of a particular service thus depends very much on the service itself. It is not
possible to define universal Quality of Service levels that may be suitable for all circumstances. Thus the most suitable
solution is to let the content creator decide what QoS the end-user should obtain for every particular elementary stream:
the author has the best knowledge of the service.

The QoS so defined represents the QoS that should be offered to the end-user, i.e., the QoS at the output of the receiving
terminal. This may be the output of the decoder, but may also take into account the compositor and renderer if they
significantly impact the QoS of the presentation as seen by the end-user, and if a capacity for processing a specific stream
can be quantified. Note that the QoS information is not mandatory. In the absence of QoS requirements, a best effort
approach should be pursued. This QoS concept is defined as total QoS.

In ISO/IEC 14496-1 the information concerning the total QoS of a particular elementary stream is carried in a QoS
Descriptor as part of its elementary stream descriptor (ES_Descriptor). The receiving terminal, upon reception of the
ES_Descriptor, is therefore aware of the characteristics of the elementary stream and of the total QoS to be offered to the
end-user. Moreover the receiving terminal knows about its own performance capabilities. It is therefore the only possible
entity able to compute the Quality of Service to be requested to the delivery layer in order to fit the user requirements.
Note that this computation could also ignore/override the total QoS parameters.

The QoS that is requested to the delivery layer is named media QoS, since it is expressed with a semantic which is media
oriented. The delivery layer will process the requests, determine whether to bundle multiple elementary streams into a
single network connection (TransMux) and compute the QoS for the network connection, using the QoS parameters as
defined by the network infrastructure. This QoS concept is named network QoS, since it is specific for a particular network
technology.

The above categorization of the various QoS concepts managed in ISO/IEC 14496 may suggest that this issue is only
relevant when operating in a network environment. However the concepts are of general value, and are applicable to
systems operating on local files as well, when taking into account the overall capacity of the system.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 111

Annex D
(informative)

 Conversion Between Time and Date Conventions

D.1 Conversion Between Time and Date Conventions

This subclause is informative. The types of conversions that may be required are summarized in the diagram below.

Figure E.1 — Conversion routes between Modified Julian Date (MJD) and
Coordinated Universal Time (UTC)

The conversion between MJD + UTC and the “local” MJD + local time is simply a matter of adding or subtracting the local
offset. This process may, of course, involve a “carry” or “borrow” from the UTC affecting the MJD. The other five
conversion routes shown on the diagram are detailed in the formulas below.

Symbols used:

MJD: Modified Julian Day

UTC: Co-ordinated Universal Time

Y: Year from 1900 (e.g. for 2003, Y = 103)

M: Month from January (= 1) to December (= 12)

D: Day of month from 1 to 31

WY: "Week number" Year from 1900

MN: Week number according to ISO 2015

WD: Day of week from Monday (= 1) to Sunday (= 7)

ISO/IEC 14496-1:2004(E)

112 © ISO/IEC 2004 — All rights reserved

K, L ,M' , W, Y': Intermediate variables

×: Multiplication

int: Integer part, ignoring remainder

mod 7: Remainder (0-6) after dividing integer by 7

a) To find Y, M, D from MJD

Y' = int [(MJD - 15 078,2) / 365,25]

M' = int { [MJD - 14 956,1 - int (Y' × 365,25)] / 30,6001 }

D = MJD - 14 956 - int (Y' × 365,25) - int (M' × 30,6001)

If M' = 14 or M' = 15, then K = 1; else K = 0

Y = Y' + K

M = M' - 1 - K × 12

b) To find MJD from Y, M, D

If M = 1 or M = 2, then L = 1; else L = 0

MJD = 14 956 + D + int [(Y - L) × 365,25] + int [(M + 1 + L × 12) × 30,6001]

c) To find WD from WJD

WD = [(MJD + 2) mod 7] + 1

d) To find MJD from WY, WN, WD

MJD = 15 012 + WD + 7 × { WN + int [(WY × 1 461 / 28) + 0,41] }

e) To find WY, WN from MJD

W = int [(MJD / 7) - 2 144,64]

WY = int [(W × 28 / 1 461) - 0,0079]

WN = W - int [(WY × 1 461 / 28) + 0,41]

EXAMPLE

 MJD = 45 218 W = 4 315

 Y = (19)82 WY = (19)82

 M = 9 (September) WN = 36

 D = 6 WD = 1 (Monday)

NOTE — These formulas are applicable between the inclusive dates 1 900 March 1 to 2 100 February 28.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 113

Annex E
(informative)

Graphical Representation of

Object Descriptor and Sync Layer Syntax

E.1 Length encoding of descriptors and commands

« Length field » : from one byte, up to four bytes

length

71

1 length

71

1 length

71

1 length

71

0length

71

0 --------------

ISO/IEC 14496-1:2004(E)

114 © ISO/IEC 2004 — All rights reserved

E.2 Object Descriptor Stream and OD commands

8/16/24/32

Object
Descriptor

ID
ES_D [1..255]

« Length
 field »

10

OD [1...255]

ES_DescriptorUpdate

ObjectDescriptorUpdate

TAG=
0x03

TAG=
0x01

8

8

ObjectDescriptorRemove

ES_DescriptorRemove

ObjectDescriptor
ID[(« Lengthfield »*8)/10]

TAG=
0x02

Object
Descriptor

ID

ES_ID [1..255]TAG=
0x04

Reserved=1111.11

108 6 n*16

8

ObjectDescriptor
Update

... ...

IPMP_Descriptor
Update

ES_Descriptor
Update

... ...

ObjectDescriptor
Remove

IPMP_Descriptor
Remove

...

ES_Descriptor
Remove

ObjectDescriptor
Update

...

« Length
 field »

« Length
 field »

« Length
 field »

IPMP_DescriptorUpdate TAG=
0x05

8

« Length
 field »

IPMP_Descriptor [1..255]

IPMP_DescriptorRemove TAG=
0x06

8

« Length
 field »

IPMP_DescriptorID [1..255]

Object Descriptor Stream

8/16/24/32

8/16/24/32

8/16/24/32

8/16/24/32

8/16/24/32

n*10

6

Reserved=1111.11

n*8

E.3 OCI stream

An OCI_Descr can be any descriptor among the OCI descriptors detailed in subclause 7.2.6.18: ContentClassification,
Keyword, Rating; Language, ShorttTextual, ExpandedTextual, ContentCreationDate, ContentCreationName,
OCICreationName, OCICreationDate, and 22 other ISO reserved descriptors.

OCI Descr[1...255]OCI_Events

15

« Length
 field »

1

absolute
TimeFlag

event
 ID

starting
 Time

duration

32 32 8/16/24/32

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 115

E.4 Object descriptor and its components

One descriptor appears several times: the ExtensionDescriptor (extDescr), the tag of which being among a range of
valuesstarting at 0x60 and ending at 0xFE.

Object
Descriptor

ID

URL_
Flag

Reserved

=1111.1

10 51

URL_Flag == 1

Optional
Fields

TAG=
0x1

ObjectDescriptor

URL_Flag == 0

8

ociDescr
 [0...255]

esDescr
 [1...30]

extDescr
[0...255]

length
 field

 URLstring URL
length

[0...255]
ipmpDescrPtr

8 8*URLlength

8/16/24/32

« Length
 field »

8

Object
Descriptor

ID

URL_
Flag Reserved

=1111

10 1 4

8

1

extDescr
[0...255]

Include
Inline

Profiles
Flag

URL_Flag == 1

Optional

Fields
TAG=
0x2

8/16/24/32

InitialObjectDescriptor

 URL String
 URL
length

8*URLlength

88 8

URL_Flag == 0
 graphics
 Profile
 Level
Indication

ESD [1...30] ociDescr

[0...255]

 audio
 Profile
 Level
Indication

 OD
 Profile
 Level
Indication

 scene
 Profile
 Level
Indication

 visual
 Profile
 Level
Indication

[0...255]

ipmpDescrPtr

8 8

ipIDS

[0….255]

 qos
Descr
[0….1]

lang
Descr

[0….255]

 ipmp
DescrPtr

[0….255]

extDescr

[0….255]

sl ipiPtr

[0….1]

ES_Descriptor

ES_ID

8/16/24/32

« Length
 field »

1

stream

Dependence
Flag

URL_
Flag

OCR
stream
 flag

.stream
Priority

 dec
Config
Descr

Config
Descr

dependsOn
_ES_ID URLstring

1 116 165 8

TAG=
0x03

8

 URL
length

 8*URLlength

 reg
Descr
[0….1]

OCR
 ES
 ID

16

8 6

object
Type

Indication
upStream

1

stream
Type reserved

=1
bufferSizeDB

24

TAG
=0x04

DecoderConfigDescriptor maxBitRate
 avg

BitRate

 dec
Specific

Info[0..1]

18 32 32

« Length
 field »

8/16/24/32

profileLevel
Indication
IndexDescr

[0..255]

 When present, the decSpecificInfo descriptor is an opaque descriptor (tag=0x05), configured according to the
ObjectDescriptorID and to the streamType.

ISO/IEC 14496-1:2004(E)

116 © ISO/IEC 2004 — All rights reserved

C ontentIdentificationDescriptor

8/16/24/32

« Length
 field »

2

Com patibility
 =0

contentType
 F lag

1 11 3

T AG =
0x07

8 8

Content
Identifier
 Flag

protected
 Content

reserved
 = 111

content
 T ype

Content
Identifier
 Type

Content
Identifier

 8 n*8

SupplementaryContentIdentificationDescriptor

8/16/24/32

« Length
 field »

24

TAG=

0x8

8

languageCode

 Suppl
 Content
Identifier
 Title
 Length

8*TitleLength8

 Suppl
 Content
Identifier
 Title

 Suppl
 Content
Identifier
 Value
 Length

 Suppl
 Content
Identifier
 Value

8*ValueLength8

IPI_DescrPointer

IPI_ES_ID

8/16/24/32

« Length
 field »

16

T AG =
0x09

8

QoS_Descriptor

8/16/24/32

« Length
 field »

8

predefined

TAG=
0x0C

8

Optional
 Fields

 QoS_
Qualifier
 Tag

 _

« Length
field »

 QoS_
Qualifier
 Data

 QoS_
Qualifier
 Tag

 _

 QoS_
Qualifier
 Data

Length*8

if predefined == 0

Length*88 8

« Length
field »

8/16/24/32 8/16/24/32

RegistrationDescriptor

formatIdentifier

8/16/24/32

« Length
 field »

32

TAG=
0x0D

8

additionalIdentificationInfo

n*8

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 117

E.5 OCI Descriptors

ContentClassificationDescriptor

classificationEntity

8/16/24/32

« Length
 field »

32

TAG=
0x40

8 n*8

classificationTable contentClassificationData

16

KeyWordDescriptor

languageCode

8/16/24/32

« Length
 field »

24

TAG=
0x41

8

keyWord
 Count

8 8

8*

keyWord
 Length ---

keyWord
 Length keyWord[---]keyWord[---]

8

keyWordLength

keyWordLength

If isUTF8_string

keyWordLength

keyWordLength

first keyWord

last keyWord

8*

16*16*

isUTF8
_string

1 7

Resv.
111.1111

else

RatingDescriptor

8/16/24/32

« Length
 field »

TAG=
0x42

8 32

ratingEntity ratingCriteria ratingInfo

16 n*8

ShortTextualDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x44

8

nameLength

nameLength

8

languageCode textLength

textLengthIf isUTF8_string

else nameLength textLength

eventName eventText

8

8* 8*

16*16*

isUTF8
_string

Resv.
111.1111

1 7

ISO/IEC 14496-1:2004(E)

118 © ISO/IEC 2004 — All rights reserved

ExpandedTextualDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x45

8
itemDescriptionLength

8

languageCode

itemLengthIf isUTF8_string

else itemLength

 item
Description
 Length

8

 item
Description

itemDescriptionLength

 item
 Length

 item
Text

8

 first item last item

 item
Count

 text
 Length

nonItem
 Text

8* (text Length)

 text Length (

n*8
8*8*

16* 16* 16*

isUTF8
_string

Resv.
111.1111

1 7

)

If < 255

...

ContentCreatorNameDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x46

8

Language
 Code

contentCreatorLength

8

content
Creator
 Count

First item

If isUTF8_string

else

8*

content
Creator
 Length

content
Creator
 Name

8

contentCreatorLength 16*

isUTF8
_string

Reserv.
111.1111

1 7

Last item

...

ContentCreationDateDescriptor

8/16/24/32

« Length
 field »

TAG=
0x47

8 40

contentCreationDate

LanguageDescriptor

languageCode

8/16/24/32

« Length
 field »

24

TAG=
0x43

8

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 119

OCICreatorNameDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x48

8

Language
 Code

 OCICreatorLength

8

OCI
Creator
 Count

If isUTF8_string

else

8*

 OCI
Creator
 Length

 OCI
Creator
 Name

8

OCICreatorLength 16*

isUTF8
_string

Reserv .
111.1111

1 7

Last item

...

OCICreationDateDescriptor

8/16/24/32

« Length
 field »

TAG=
0x49

8 40

OCICreationDate

SmpteCameraPositionDescriptor

8/16/24/32

« Length
 field »

8

TAG=
0x4A

8

Parameter
 ID

8

Camera
 ID

Parameter

32

Parameter
 Count

8

First item Last item

...

ISO/IEC 14496-1:2004(E)

120 © ISO/IEC 2004 — All rights reserved

E.6 Sync layer configuration and syntax

8

timeStamp
Resolution

OCR
Resolution

timeStamp
Length

OCR
Length

32
8 8 8 832

AU_
Length

instant
BitRate
Length

degradation
Priority
Length

4 5

AU_seq
 Num
Length

timeScale

32

accessUnit
Duration

composition
Unit

Duration

16 16

« Length
 field »

8/16/24/32

Predefined

8

 First set
of Optional
 flieds

startDecoding
TimeStamp

startComposition
TimeStamp

timeStamp
Length

timeStamp
Length

TAG=
0x06

SLConfigDescriptor

8

packetSeq
 Num
Length

2

reserved

=11

5

startDecoding

 second set
of Optional
 flieds

 third set
of Optional
 flieds

Flags

If false
1 1 1 1 1 1 1 1

 duration
Flag

 useIdle
Flag

 useAccess
UnitStart

Flag

 useAccess
UnitEnd

Flag

useRandom
AccessPoint

Flag

hasRandom
AccessUnit
OnlyFlag

 usePadding
Flag

 useTime
Stamps

Flag

32

SL_PDU

access
Unit
Start
 Flag

1

instant
Bitrate

Flag

1

decoding
TimeStamp

composition
TimeStamp

OCR
flag

access
Unit
End
 Flag

idle
Flag

padding
Flag

 packet
Sequence
Number

Object
Clock

Reference

Optional
Fields

1 1 1 1

padding
Bits

Optional
Fields

3

decoding
TimeStamp

Flag

composition
TimeStamp

Flag

accessUnit
Length

instant
BitRate

SL_Packet
Header

SL_Packet
Payload

from
SLConfigDescriptor

SL_Packet Header:

when non idle and
when the payload is
not only padding bytes

lengths

SL_Packet Payload:

Payloadaccording to padding flag and bits, it is either Payload padding
 bits

or Padding bytesor only

lengths

random
Access
Point
Flag

1 1 1

 AU_
sequence
Number

 degprio
 flag

 degradation
 priority

1

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 121

Annex F
(informative)

Elementary Stream Interface

The elementary stream interface (ESI) is a conceptual interface that specifies which data need to be exchanged between
the entity that generates an elementary stream and the sync layer. Communication between the coding and sync layers
cannot only include compressed media, but requires additional information such as time codes, length of access units, etc.

An implementation of ISO/IEC 14496-1, however, does not have to implement the elementary stream interface. It is
possible to integrate parsing of the SL-packetized stream and media data decompression in one decoder entity. Note that
even in this case the decoder receives a sequence of packets at its input through the DMIF Application Interface rather
than a data stream.

The interface to receive elementary stream data from the sync layer has a number of parameters that reflect the side
information that has been retrieved while parsing the incoming SL-packetized stream:

ESI.receiveData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp, compositionTimeStamp,
accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength, AU_sequenceNumber,
degradationPriority, instantBitrate , errorStatus)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of Esdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an undetermined period of
time. This flag may be used by the decoder to discriminate between deliberate and erroneous absence of subsequent SL
packets.

objectClockReference – contains a reading of the object time base valid for the point in time when the first byte of ESdata
enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

AU_sequenceNumber - if present, it shall be continuously incremented for each access unit as a modulo counter. A
discontinuity at the decoder corresponds to one or more missing access units. In that case, an error shall be signalled by
the means of errorStatus. If this syntax element is not present, access unit continuity checking cannot be performed for
this elementary stream.

degradationPriority - indicates the importance of the ESdata bytes. The streamPriority defines the base priority of an ES.
degradationPriority defines a decrease in priority for the ESdata bytes relative to the base priority. The priority for the
ESdata bytes is given by:

 ESdata bytes priority = streamPriority – degradationPriority

ISO/IEC 14496-1:2004(E)

122 © ISO/IEC 2004 — All rights reserved

degradationPriority remains at this value until its next occurrence. This indication may be for graceful degradation by the
decoder of this elementary stream as well as by the adaptor to a specific delivery layer instance. The relative amount of
complexity degradation among ESdata bytes of different elementary streams increases as ESdata bytes decreases.

instantBitrate, – is the instantaneous bit rate in bits per second of this elementary stream until the next instantBitrate field
is found

errorStatus - indicates whether ESdata is error free, possibly erroneous or whether data has been lost preceding the
current ESdata bytes

A similar interface to send elementary stream data to the sync layer requires the following parameters that will
subsequently be encoded on the sync layer:

ESI.sendData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp, compositionTimeStamp,
accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength, AU_sequenceNumber, instantBitrate ,
degradationPriority)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of ESdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an undetermined period of
time. This flag may be used by the decoder to discriminate between deliberate and erroneous absence of subsequent SL
packets.

objectClockReference – contains a reading of the object time base valid for the point in time when the first byte of ESdata
enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

AU_sequenceNumber - if present, it shall be continuously incremented for each access unit as a modulo counter. A
discontinuity at the decoder corresponds to one or more missing access units. In that case, an error shall be signalled by
the means of errorStatus. If this syntax element is not present, access unit continuity checking cannot be performed for
this elementary stream.

degradationPriority - indicates the importance of the ESdata bytes. The streamPriority defines the base priority of an ES.
degradationPriority defines a decrease in priority for the ESdata bytes relative to the base priority. The priority for the
ESdata bytes is given by:

 ESdata bytes priority = streamPriority – degradationPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful degradation by the
decoder of this elementary stream as well as by the adaptor to a specific delivery layer instance. The relative amount of
complexity degradation among ESdata bytes of different elementary streams increases as ESdata bytes decreases.

instantBitrate, – is the instantaneous bit rate in bits per second of this elementary stream until the next instantBitrate field
is found.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 123

Annex G
(informative)

Upstream Walkthrough

G.1 Introduction

Upstream messages from a client terminal to the server terminal are categorized in two types, application specific
command messages and media stream specific messages. Application specific command messages are general
messages applied to a set of different media streams, for example, stream control messages. These messages may be
defined based on the BIFS ServerCommand node. Media stream specific messages are used to establish communication
between a specific media stream decoder and its encoder. This may be used, for example, to control the encoder remotely
from the client terminal side as a result of the decoding process or user interaction. The syntax and semantics of media
stream specific messages are defined in the relevant part of the standard. For example, the syntax and semantics of
messages for the visual NEWPRED tool are defined in ISO/IEC 14496-2, defining the Visual tools of this specification.

The need for an upstream channel is signaled to the client terminal by supplying an appropriate elementary stream
descriptor declaring the parameters for that stream. The client terminal opens this upstream channel in a similar manner
as it opens the downstream channels. The entities (e.g. media encoders & decoders) that are connected through an
upstream channel are known from the parameters in its elementary stream descriptor and from the association of the
elementary stream descriptor to a specific object descriptor.

Packetization of upstream messages for transmission and synchronization with downstream channel data is done by the
synchronization layer. The configuration of the SL packet header for upstreams may be selected as appropriate. All
messages that are related to a single point in time should be packetized into a single access unit.

G.2 Configuration

An upstream can be associated to a single downstream or a group of downstreams. The scope of the upstream is defined
by the stream type of the downstream to which the upstream is associated. When the upstream is associated to a single
downstream it carries messages about the downstream it is associated to. If the upstream should carry messages related
to a group of downstreams, its elementary stream descriptor is associated to the ObjectDescriptorStream containing
object descriptors or the SceneDescriptionStream describing the scene, as specified in 7.2.7.1.5.2.

In the case that the upstream is attached to the ObjectDescriptorStream, only the object descriptors grouped together for
this single upstream would be carried by it. The other object descriptors outside the scope of this upstream would be
carried by other ObjectDescriptorStreams. This implies that the object descriptors requiring a single upstream should be
carried separately from the other object descriptors. If the upstream depends on a SceneDescriptionStream, all the objects
inside the scene would get the upstream messages from this upstream.

Detailed configuration rules for each case are as described below.

G.2.1 Upstream for single ES

In this case the upstream is attached to a single independent ES and will carry media specific information valid for a single
downstream it is dependent on. Because only one of the independent elementary streams defined in the same OD can be
selected for use in the scene, the upstream is not related to the ES itself but rather to the object represented by this OD.

a) The ObjectDescriptor has one or more additional ES_Descriptors defining upstream configuration for each ES which
needs a backchannel.

b) ES_Descriptor of upstream shall be defined as follows

streamDependenceFlag shall be set to ‘1’ to indicate this stream depends on a downstream.

dependsOn_ES_ID shall be set to the ES_ID value of the downstream.

ISO/IEC 14496-1:2004(E)

124 © ISO/IEC 2004 — All rights reserved

c) DecoderConfigDescriptor in ES_Descriptor of upstream shall be defined as follows.

objectTypeIndication and streamType shall be set to the same value of the downstream

upStream flag shall be set to ‘1’ to indicate this is a backchannel stream.

bufferSizeDB, maxBitrate, avgBitrate and DecoderSpecificInfor shall be set appropriately.

G.2.2 Upstream for a group of ESs

In this case the upstream is attached to an ObjectDescriptorStream or a SceneDescriptionStream to be used as an
upstream for a group of elementary streams. The basic configuration rules for the ObjectDescriptor are the same as in the
case of upstream for a single ES. The scope and type of messages carried by the upstream is decided by the following
rules.

a) If an upstream is configured to be dependent on a certain ObjectDescriptorStream and its streamType is either
VisualStream or AudioStream, it carries media stream specific information that may relate to more than one of the
downstreams that are described by the ObjectDescriptors transmitted within the ObjectDescriptorStream upon which
the upstream depends. All decoders for streams with matching streamType within that set of streams may use the
upstream channel to send messages.

b) If an upstream is configured to be dependent on a certain SceneDescriptionStream and its streamType is either
VisualStream or AudioStream, it carries media specific information for downstreams in the whole scene as described
by the SceneDescriptionStream upon which the upstream depends. All decoders for streams with matching
streamType within that set of streams may use the upstream channel to send messages.

c) If an upstream is configured to be dependent on a certain SceneDescriptionStream and its streamType is
SceneDescriptionStream, it will carry messages related to the BIFS scene or to application signaling (e.g. based on
the ServerCommand specification).

G.3 Content access procedure with DAI

When the receiving terminal receives a DecoderConfigDescriptor whose upStream flag is set to ‘1’, it opens a logical
channel for the upstream ES by setting the ‘direction’ field of the DA_ChannelAdd primitive to UPSTREAM. Other
procedures and rules for accessing and managing content at the client terminal are basically the same as for the case of
downstream. The syntax and semantics of upstream messages, defining their functionality and the expected interaction
between encoder and decoder, are defined in the appropriate part of ISO/IEC 14496. Messages related to streams of
streamType SceneDescriptionStream and ObjectDescriptorStream are defined in this part of the specification. Concerning
upstream management at the sending terminal, this standard does not normatively specify any behavioral procedures or
rules.

G.4 Example

This section describes an example of the setup and the usage of MPEG-4 upstreams, according to the rules described in
the above sections

G.4.1 Example scene having objects with upstream

Figure G.1 shows a simple scene with 3 objects (1 natural video and 2 synthetic objects) for which information is gathered
through different upstreams:

• ServerCommand upstream is used to control the animation (start, stop, …) of all objects (natural video and SNHC) in
the scene (possibly also audio objects).

• NewPred upstream is used for error correction of a single natural video object.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 125

• SNHC_QoS upstream conveys information of the client terminal w.r.t. its decoding and rendering capabilities for all
3D (SNHC) objects.

The example scene of Figure G.1 is described through the object descriptor Full_Scene, which points to different streams:

InitialObjectDescriptor Full_Scene{
 bit(10) Full_Scene_ID (=OD_ID);
 bit(1) 0 (=URL_Flag);
 bit(1) 1 (=includeInlineProfileLevelFlag);
 const bit(4) reserved=0b1111;
 bit(8) ODProfileLevelIndication;
 bit(8) sceneProfileLevelIndication;
 bit(8) audioProfileLevelIndication;
 bit(8) visualProfileLevelIndication;
 bit(8) graphicsProfileLevelIndication;
 ES_Descriptor SceneDescriptionStream_Scene_1_down;
 ES_Descriptor SceneDescriptionStream_Scene_1_up;
 ES_Descriptor ObjectDescriptorStream_Scene_1_down;
 ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

InitialObjectDescriptor Full_Scene

Object 1
(video)

Scene 1

Object 2
(3D)

Object 3
(3D)

SNHC_QoS

NewPred

ServerCommand

Figure G.1 — Backchannel information transport in a simple audio-visual scene

G.4.2 Stream configuration

Graphical summaries of the stream configuration for the example scene shown in Figure G.1 are given in Figure G.2 to
Figure G.4. In those figures configuration rules of the important fields and stream dependencies are described in detail.

ISO/IEC 14496-1:2004(E)

126 © ISO/IEC 2004 — All rights reserved

InitialObjectDescriptor Full_Scene{
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

ES_Descriptor SceneDescriptionStream_Scene_1_down {
bit(16) SceneDescriptionStream_Scene_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_down;

}

DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_down {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x03 (=streamType); // SceneDescriptionStream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor SceneDescriptionStream_Scene_1_up {
bit(16) SceneDescriptionStream_Scene_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) SceneDescriptionStream_Scene_1_down_ID;
DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_up;

}

DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_up {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x03 (=streamType); // SceneDescriptionStream

// => conveys ServerCommand
bit(1) 1 (=down/upstream); // Upstream

}

2

3
4

1

Figure G.2 — Syntax for SceneDescription streams

InitialObjectDescriptor Full_Scene{
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

ES_Descriptor ObjectDescriptorStream_Scene_1_down {
bit(16) ObjectDescriptorStream_Scene_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_down;

}

DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_down {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x01 (=streamType); // ObjectDescriptorStream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor ObjectDescriptorStream_Scene_1_up {
bit(16) ObjectDescriptorStream_Scene_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) ObjectDescriptorStream_Scene_1_down_ID;
DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_up;

}

DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_up {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x01 (=streamType); // ObjectDescriptorStream

// => conveys SNHC_QoS
bit(1) 1 (=down/upstream); // Upstream

}

6

7 8

5

Figure G.3 — Syntax for ObjectDescriptor streams

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 127

In Figure G.2, dependencies and configurations of two SceneDescriptionStreams are shown. Upstream
SceneDescriptionStream_Scene_1_up is dependent on downstream SceneDescriptionStream_Scene_1_down (see
arrows 1 and 2 in figure). Its streamType is set to SceneDescriptionStream since it will carry ServerCommand
messages (see arrows 3 and 4 in figure).

In Figure G.3, dependencies and configurations of two ObjectDescriptionStreams are shown. Upstream
ObjectDescriptionStream_Scene_1_up is dependent on downstream ObjectDescriptionStream_Scene_1_down (see
arrows 5 and 6 in figure). Its streamType is set to VisualStream since it will carry SNHC_QoS messages for object 2
and object 3 in this example (see arrows 7 and 8 in figure). ObjectDescriptorStream_Scene_1_up conveys SNHC_QoS
information that is related to all SNHC objects of the underlying group of objects (possibly single object). This SNHC_QoS
information is basically attached to all Visual objects (see dashed box in Figure G.1), but the definition of SNHC_QoS
constrains the scope of application to SNHC objects only. Whether the Visual objects are of type SNHC or Natural cannot
be determined at the system level : it is determined at the Visual syntax level, by the visual_object_type, in accordance to
table 6-5 of ISO/IEC14496-2.

ObjectDescriptor Object_1 {
bit(10) Object_1_ID (=OD_ID);
ES_Descriptor Object_1_down;
ES_Descriptor Object_1_up;

}

ES_Descriptor Object_1_down{
bit(16) Object_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_Object_1_down;

}

DecoderConfigDescriptor dec_config_Object_1_down {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x04 (=streamType); // Visual stream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor Object_1_up{
bit(16) Object_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) Object_1_down_ID;
DecoderConfigDescriptor dec_config_Object_1_up;

}

DecoderConfigDescriptor dec_config_Object_1_up {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x04 (=streamType); // Visual stream

// => conveys NewPred
bit(1) 1 (=down/upstream); // Upstream

}

10

11 12

9

Figure G.4 — Syntax for Object_1 streams

In Figure G.4, dependencies and configurations of two Elementary Streams are shown. Upstream Object_1_up is
dependent on downstream Object_1_down (see arrows 9 and 10 in figure). Its streamType is set to VisualStream
since it will carry NewPred messages for object 1 in this example (see arrows 11 and 12 in figure). Object_1_up conveys
NewPred information for the corresponding natural video object. The definition of NewPred automatically constrains its
application to single natural video objects, i.e. the behavior of the server-client system is undefined if a NewPred
command is associated to a group of objects and/or a single non-natural video object.

ISO/IEC 14496-1:2004(E)

128 © ISO/IEC 2004 — All rights reserved

Annex H
(informative)

Scene and Object Description Carrousel

The “scene carousel”, also called “BIFS carousel”, is a mechanism that allows the use of dynamic scenes in broadcast
environments. In the broadcast scenarios, it is necessary to supply full scene description periodically, so that terminals
that tune in at the middle of the session will be able to construct the presentation. On the other hand, it is desirable that
terminals that are already tuned will receive only scene updates. This is necessary because sometimes the user at the
receiving terminal side interacts with the scene and changes it locally, applying changes that might be lost if a full scene
refresh is performed. Another use of the scene carousel is in situations when data is transmitted over unreliable channels.
In this case, data, including scene updates, can be lost and therefore a periodical full scene refresh is necessary to
recover from such losses.

The scene carousel is constructed using a tool provided by the Synchronization Layer. SL-packet headers may contain a
field called AU_sequenceNumber. This field is regarded as the semantical sequence number of the access unit. When
the terminal encounters two consecutive access units with the same sequence number, it understands that the second
carries the same information as the first one and therefore can be ignored. In a scene carousel, a sequence of scene
updates is followed by a Scene Replace command that conveys the full description of the scene. The scene as described
by the Scene Replace command is identical to the scene as described by the preceding accumulated updates, therefore
the command is delivered as an access unit with the same sequence number as the preceding access unit. Terminals that
have successfully processed the update commands will ignore the Scene Replace command, while terminals that need a
full scene refresh, whether because they have just tuned in, or lost data on the network, skip the updates and process the
Scene Replace command.

The above description refers to the situation when two consecutive access units with the same AU_sequenceNumber
are received and the second is a random access point. The decoder should behave differently if the second access unit is
not a random access point. In that case, the appearance of an identical sequence number in the two access units
indicates that the two access units refer to the same key state of the scene. I.e. the second access unit can be safely
processed by the decoder even if it is known to the decoder that one or more access units that originally existed between
the two were lost on the network. The mechanism is called “BIFS carousel” because it is in common use for BIFS and
Animation streams, but since the SL is a general tool in MPEG-4, it can be used for any kind of stream.

The following example demonstrates the use of the scene carousel and the AU_sequenceNumber field:

AU_sequenceNumber RAP Receiving Terminal Behavior

0 Yes
1 No
2 No player tunes in, waits for RAP

3 No

3 yes RAP arrived, player starts processing AUs
4 no process update

4 no process update (even though it’s same number as preceding AU)

4 yes this is the carousel sync point, ignored by player
4 no packet lost

4 no process update, even though preceding AU was lost

5 no packet lost
5 no cannot process update since it depends on a lost packet

6 no ignore, needs a RAP

6 yes recover – resume processing

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 129

Annex I
(normative)

Usage of ITU-T Recommendation H.264 | ISO/IEC 14496-10 AVC

I.1 SL packet encapsulation of AVC Access Unit

The definition of AVC Access Unit is specified in the subclause 7.4.1.2 of ITU-T Recommendation H.264 | ISO/IEC 14496-10.
Following restrictions and recommendation are applied when it is encapsulated as an SL packet.

• Start Codes shall not be present in the stream. The field indicating the size of each following NAL unit shall be
added before NAL unit. The size of this field is defined in DecoderSpecificInfo.

• SL packet whose randomAccessPointFlag in the header is set to ‘1’ and subsequent SL packets shall carry
access units that parameter sets required to decode are provided prior to their use.

• The Picture Timing SEI message that defines the timing information may be present in the video elementary
stream, as this message contains other information than timing, and may be required for conformance testing of
decoder. However, when it is encapsulated as SL packets, those time information carried by the Picture Timing
SEI message shall not be used to decide decoding time or composition time of access unit. Timing information
for decoding and composition shall be provided by SL packet header.

• It is recommended encapsulating one NAL unit in one SL packet when it is delivered over lossy environment.

I.2 Handling of Parameter Sets

I.2.1 Usage of DecoderSpecificInfo

Parameter Sets of AVC contents may be updated dynamically. However, DecoderSpecificInfo carrying Parameter Sets
shall not be changed through the session. Parameter Sets carried in the DecoderSpecificInfo shall be updated by one of
two way as follows:

• Sequence or Picture Parameter Set NAL units may be inserted in the video stream;

• A parameter set elementary stream, containing only parameter set access units, may be used to carry parameter
sets separately from AVC video elementary stream. When the parameter set elementary stream is used, access
units in AVC video elementary stream shall not carry parameter sets. The parameter sets shall be updated when
the decoding time defined in the header of SL packet carrying those parameter sets is reached.

I.2.1.1 Decoder Specific Information

This subclause defines the DecoderSpecificInfo descriptor for an AVC elementary stream.

I.2.1.1.1 Syntax

aligned(8) class AVCDecoderSpecificInfo extends DecoderSpecificInfo : bit(8)
tag=DecSpecificInfoTag {
 AVCVideoConfigurationRecord config;
}

I.2.1.1.2 Semantics

The decoder specific information for an AVC stream contains an AVC video stream decoder configuration record, which is
defined in ISO/IEC 14496-15 subclause 5.2.4.

config contains the decoder configuration record for the AVC elementary stream decoder configuration.

ISO/IEC 14496-1:2004(E)

130 © ISO/IEC 2004 — All rights reserved

I.2.1.2 Object type indication

The DecoderConfigDescriptor shall set the value of streamtype equal to 0x04 for both AVC video elementary
stream and the AVC parameter set elementary streams.

The DecoderConfigDescriptor for an AVC video elementary stream, possibly including in-line sequence or picture
parameter sets, shall set objectTypeIndication to be 0x21 (ITU-T Recommendation H.264 | ISO/IEC 14496-10). For
the AVC parameter set elementary stream, the objectTypeIndication value shall equal 0x22 (Parameter Sets from
ITU-T Recommendation H.264 | ISO/IEC 14496-10).

I.2.1.3 Stream dependency

If the parameter set elementary stream is present, the elementary stream descriptors for the two streams shall satisfy the
following conditions:

(1) The video elementary stream is dependent on the parameter set elementary stream and the ES_Descriptor for
the video elementary stream shall have a streamDependenceFlag equal to true and indicate the ESID of the
parameter set elementary stream in the dependsOnESID field. The streamDependenceFlag in the
ES_Descriptor for the parameter set elementary stream shall be false.

(2) The elementary stream clocks for the parameter set elementary stream and the video elementary stream shall be
the same and synchronized. The OCRstreamflag and OCR_ES_Id fields in the ESDescriptor for the video
elementary stream and parameter set elementary streams shall be used to indicate that both streams share the
same OCR.

I.3 Usage of ISO/IEC 14496-14 AVC File Format in MPEG-4 Systems

This subclause specifies how the AVC file format shall be used when the file is marked as being compatible with the
MPEG-4 file format specified in ISO/IEC 14496-14. This subclause applies when the file is branded with the MPEG-4 file
format brand of 'mp41' or 'mp42', and the AVC video data must be used in an MPEG-4 systems context.

I.3.1 Elementary Stream Descriptor

As is normal for MPEG-4 streams, the TrackID is related to the ElementaryStreamID, and the SLConfigDescriptor is
generated following the rules for any MPEG-4 stream. The format of the ES descriptor is specified in subclause 7.2.6.5.

If the ES descriptor should contain any other descriptors than SLConfigDescriptor or DecoderConfigDescriptor, they are
stored in the Sample Description as defined in ISO/IEC 14496-15 subclause 5.3.4.1.

The use of multiple non-dependent ES descriptors may also be indicated by the presence of more than one independent
AVC ES descriptors in an object descriptor.

I.3.2 Forming the DecoderConfigDescriptor

The buffersizeDB, maxBitrate, and avgBitrate fields can be filled by inspection of the VUI Sequence Parameters, if present
in the sequence parameter set for the AVC stream. The DecoderSpecificInfo is formed using the contents of the
AVCConfigurationBox.

I.3.3 Switching Picture Tracks

Switching picture tracks are not MPEG-4 elementary streams and shall not be included within an MPEG-4 object
descriptor.

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 131

Annex J
(informative)

Patent statements

J.1 General

The International Organization for Standardization and the International Electrotechnical Commission (IEC) draw attention
to the fact that it is claimed that compliance with this part of ISO/IEC 14496 may involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent right have assured the ISO and IEC that they are willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statements of the holders of these patents right are registered with ISO and IEC. Information may be obtained from the
companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of patent
rights other than those identified in this annex. ISO and IEC shall not be held responsible for identifying any or all such
patent rights.

J.2 Patent Statements for Version 1

The table summarises the formal patent statements received and indicates the parts of the standard to which the
statement applies. (S: Systems, V: Visual, A: Audio, R: Reference Software, D: DMIF) The list includes all organisations
that have submitted informal patent statements. However, if no "X" is present, no formal patent statement has yet been
received from that organisation.

 Company S V A R D
1. Alcatel x x x x x
2. AT&T
3. BBC x x x x x
4. Bosch x x x
5. British Telecommunications x x x x x
6. Canon x x x x x
7. CCETT x x x x x
8. Columbia University x x x x x
9. Creative x x x
10. CSELT x
11. DEmoGraFX x x
12. DirecTV x x x
13. Dolby x x x x x
14. EPFL x x x
15. ETRI x x x x x
16. FhG x x x x x
17. France Telecom x x x x x
18. Fujitsu Limited x x x x x
19. GC Technology Corporation x x x
20. General Instrument x x

ISO/IEC 14496-1:2004(E)

132 © ISO/IEC 2004 — All rights reserved

21. Hitachi x x x x x
22. Hyundai x x x x x
23. IBM
24. Institut für Rundfunktechnik x x x x
25. InterTrust
26. JVC x x x x x
27. KDD Corporation x x
28. KPN x x x x x
29. LG Semicon
30. Lucent
31. Matsushita x x x x x
32. Microsoft x x x x x
33. MIT
34. Mitsubishi x x x x
35. Motorola x x
36. NEC Corporation x x x x x
37. NHK x x x x x
38. Nokia x x x
39. NTT x x x x x
40. OKI x x x x x
41. Philips x x x x x
42. PictureTel Corporation x x
43. Rockwell x x x x x
44. Samsung x x x
45. Sarnoff x x x x x
46. Scientific Atlanta x x x x x
47. Sharp x x x x x
48. Siemens x x x
49. Sony x x x x x
50. Telenor x x x x x
51. Teltec DCU x x
52. Texas Instruments
53. Thomson x x x
54. Toshiba x
55. Unisearch Ltd. x x
56. Vector Vision x

J.3 Patent Statements for Version 2

The table summarises the patent statements received for Version 2 and indicates the parts of the Version 2 standard to
which the statement applies. A Legend to interpret the table is given below.

Legend: The presence of a name of a company in the list below indicates that a patent statement has been received
from that company

 The presence of a cross indicates that the statement identifies the part of the MPEG-4 version 2 standard
to which the statement applies

 No cross in a line indicates that the statement does not identify which part of the standard the statement
applies

ISO/IEC 14496-1:2004(E)

© ISO/IEC 2004 — All rights reserved 133

 Company S V A R D
1. Apple x x
2. British Telecommunications
3. Bosch x x x x x
4. CCETT x x x x x
5. Columbia Innovation

Enterprise
x x x x x

6. DemoGraFX x x x x x
7. DirecTV x x x
8. Dolby x x x x x
9. EPFL x x x
10. France Telecom x x x x x
11. Fraunhofer x x
12. Fujitsu x x
13. Hitachi x x x x x
14. Hyundai x x x x x
15. IBM x x x x x
16. Intertrust
17. JVC x x x x x
18. KPN x
19. Lucent
20. Matsushita Electric Industrial

Co., Ltd.
x x x x x

21. Microsoft x x x x x
22. Mitsubishi x x x x x
23. NEC x x x x x
24. NHK x x x x x
25. Nokia x x x x x
26. NTT x
27. NTT Mobile Communication

Networks
 x

28. OKI x x x
29. Optibase x x
30. Philips
31. Samsung x x x x
32. Sarnoff x x x x x
33. Sharp x x x x x
34. Siemens x x x x x
35. Sony x x x x x
36. Sun x
37. Thomson x x x x x
38. Toshiba x

ISO/IEC 14496-1:2004(E)

134 © ISO/IEC 2004 — All rights reserved

Bibliography

[1] A. Eleftheriadis, “Flavor: A Language for Media Representation,” Proceedings, ACM Multimedia ’97
Conference, Seattle, Washington, November 1997, pp. 1–9.

[2] C. Herpel, “Elementary Stream Management in MPEG-4,” IEEE Trans. on Circuits and Systems for Video
Technology, 1998, Vol. 9, Issue 2, March 1999, pp. 315-324.

[3] Flavor Web Site, http://www.ee.columbia.edu/flavor.
[4] R. Koenen, F. Pereira, and L. Chiariglione, “MPEG-4: Context and Objectives,” Signal Processing: Image

Communication, Special Issue on MPEG-4, Vol. 9, Nr. 4, May 1997.
[5] F. Pereira, and R. Koenen, “Very Low Bitrate Audio-Visual Applications,” Signal Processing: Image

Communication, Vol. 9, Nr. 1, November 1996, pp. 55-77.
[6] A. Puri and A. Eleftheriadis, “MPEG-4: An Object-Based Multimedia Coding Standard Supporting Mobile

Application,” ACM Mobile Networks and Applications Journal, 1998 (to appear).
[7] Fernando Pereira, Touradj Ebrahimi, “The MPEG-4 Book”, ISBN: 0-13-061621-4.

ISO/IEC 14496-1:2004(E)

ICS 35.040
Price based on 134 pages

© ISO/IEC 2004 — All rights reserved

